0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于STM32模拟UART串口通信

STM32嵌入式开发 来源:CSDN-sunny.Bit 2023-06-25 17:13 次阅读

UART工作原理

UART即通用异步收发器,是一种串行通信方式。数据在传输过程中是通过一位一位地进行传输来实现通信的,串行通信方式具有传输线少,成本底等优点,缺点是速度慢。串行通信分为两种类型:同步通信方式和异步通信方式。

但一般多用异步通信方式,主要因为接受和发送的时钟是可以独立的这样有利于增加发送与接收的灵活性。异步通信是一个字符接着一个字符传输,一个字符的信息由起始位、数据位、奇偶校验位和停止位组成。

每一个字符的传输靠起始位来同步,字符的前面一位是起始位,用下降沿通知收方开始传输,紧接着起始位之后的是数据位,传输时低位在前高位在后,字符本身由5~8位数据位组成。

数据位后面是奇偶校验位,最后是停止位,停止位是用高电平来标记一个字符的结束,并为下一个字符的传输做准备。停止位后面是不同长度的空闲位。停止位和空闲位都规定为高电平,这样可以保证起始位有一个下降沿。

UART的帧格式如图:

wKgZomSYBWaAUq5TAAAdLwoffVc558.png

UART的帧格式包括线路空闲状态(idle,高电平)、起始位(start bit,低电平)、5~8位数据位(data bits)、校验位(parity bit,可选)和停止位(stop bit,位数可为1、1.5、2位)。

往期相关推文:STM32串口通信基本原理

UART模拟原理

UART的模拟方式基本就是定时器+IO口实现。

方案1:只打印不接收

如果在实际使用中只是为了打印log而不接收数据,可以采用DWT加普通IO口的方式;

#define  VCOM_BOUND     115200
#define  VCOM_PIN       GPIO_Pin_11
#define  VCOM_PORT      GPIOA
#define  VCOM_PIN_HIGH  VCOM_PORT->BSRR = VCOM_PIN
#define  VCOM_PIN_LOW   VCOM_PORT->BRR  = VCOM_PIN


#define  BSP_REG_DEM_CR                           (*(volatile unsigned int *)0xE000EDFC) //DEMCR寄存器
#define  BSP_REG_DWT_CR                           (*(volatile unsigned int *)0xE0001000)   //DWT控制寄存器
#define  BSP_REG_DWT_CYCCNT                       (*(volatile unsigned int *)0xE0001004) //DWT时钟计数寄存器 
#define  BSP_REG_DBGMCU_CR                        (*(volatile unsigned int *)0xE0042004)


#define  DEF_BIT_00                               0x01u
#define  DEF_BIT_24                               0x01000000u
#define  BSP_BIT_DEM_CR_TRCENA                    DEF_BIT_24   
#define  BSP_BIT_DWT_CR_CYCCNTENA                 DEF_BIT_00
static unsigned int  sys_clock = 48000000;


inline void dwt_start(void)
{
 BSP_REG_DEM_CR     |= (unsigned int)BSP_BIT_DEM_CR_TRCENA;
    BSP_REG_DWT_CYCCNT  = (unsigned int)0u;            //初始化CYCCNT寄存器
    BSP_REG_DWT_CR     |= (unsigned int)BSP_BIT_DWT_CR_CYCCNTENA;    //开启CYCCNT 
}


inline void dwt_stop(void)
{
 BSP_REG_DWT_CR = 0;
}


void vcom_pin_init(void)
{ 
    GPIO_InitTypeDef GPIO_InitStructure;
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
    GPIO_InitStructure.GPIO_Pin   = VCOM_PIN;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_Out_PP;
    GPIO_Init(VCOM_PORT, &GPIO_InitStructure);
    GPIO_SetBits(VCOM_PORT,VCOM_PIN);
 VCOM_PIN_HIGH;
}


void vcom_put_char(char ch)
{
 int i;
 int dat[8];
 uint32_t sys_clk, bit_width;
 volatile uint32_t time_stamp;
 
    sys_clk = sys_clock/1000000;  
    bit_width = 1000000*sys_clk/VCOM_BOUND;
    for(i=0; i<8; i++)           
    {
        if(ch & 0x01)
            dat[i] = 1;
        else
            dat[i] = 0; 
        ch >>= 1;
    }
    OS_CPU_SR cpu_sr;
    enter_critical();//以下代码进行临界保护,防止被中断打断造成发送误码
    dwt_start();
    VCOM_PIN_LOW; //发送起始位
 time_stamp = BSP_REG_DWT_CYCCNT;
 while(BSP_REG_DWT_CYCCNT < (time_stamp+bit_width));
 for(i=0; i<8; i++)
 {
  if(dat[i])
   VCOM_PIN_HIGH;
  else
   VCOM_PIN_LOW;
  time_stamp = BSP_REG_DWT_CYCCNT;
  while(BSP_REG_DWT_CYCCNT < (time_stamp+bit_width)); //发8bit 数据位
 }
 VCOM_PIN_HIGH;
 time_stamp = BSP_REG_DWT_CYCCNT;
 while(BSP_REG_DWT_CYCCNT < (time_stamp+bit_width));     //发停止位
 dwt_stop();
 exit_critical();
}


void vcom_printf(const char *fmt, ...)
{
    char buf[0x80];
    int  i;
    va_list ap;
 memset(buf, 0x00, sizeof(buf));
    va_start(ap, fmt);
    vsnprintf(buf, sizeof(buf), fmt, ap); 
    va_end(ap); 
 
 i = 0;
 while(buf[i])
 {
  vcom_put_char(buf[i]);
  i++;
 }
}

方案2:半双工UART

实现方式: 普通定时器+普通IO口中断+fifo

/**
*软件串口的实现(IO模拟串口)
* 波特率:9600    1-8-N
* TXD : PC13
* RXD : PB14
* 使用外部中断对RXD的下降沿进行触发,使用定时器4按照9600波特率进行定时数据接收。
* Demo功能: 接收11个数据,然后把接收到的数据发送出去
*/




#define OI_TXD PCout(13)
#define OI_RXD PBin(14)


#define BuadRate_9600 100


u8 len = 0; //接收计数
u8 USART_buf[11];  //接收缓冲区


enum{
 COM_START_BIT,
 COM_D0_BIT,
 COM_D1_BIT,
 COM_D2_BIT,
 COM_D3_BIT,
 COM_D4_BIT,
 COM_D5_BIT,
 COM_D6_BIT,
 COM_D7_BIT,
 COM_STOP_BIT,
};


u8 recvStat = COM_STOP_BIT;
u8 recvData = 0;


void IO_TXD(u8 Data)
{
 u8 i = 0;
 OI_TXD = 0;  
 delay_us(BuadRate_9600);
 for(i = 0; i < 8; i++)
 {
  if(Data&0x01)
   OI_TXD = 1;  
  else
   OI_TXD = 0;  
  
  delay_us(BuadRate_9600);
  Data = Data>>1;
 }
 OI_TXD = 1;
 delay_us(BuadRate_9600);
}
 
void USART_Send(u8 *buf, u8 len)
{
 u8 t;
 for(t = 0; t < len; t++)
 {
  IO_TXD(buf[t]);
 }
}
 
 void IOConfig(void)
 {
 GPIO_InitTypeDef  GPIO_InitStructure;
 NVIC_InitTypeDef NVIC_InitStructure;
 EXTI_InitTypeDef EXTI_InitStruct;
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO|RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC, ENABLE);  //使能PB,PC端口时钟 
 
 //SoftWare Serial TXD
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;     
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;    //推挽输出
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;   //IO口速度为50MHz  
 GPIO_Init(GPIOC, &GPIO_InitStructure);       
 GPIO_SetBits(GPIOC,GPIO_Pin_13);       
  
  
 //SoftWare Serial RXD
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  
 GPIO_Init(GPIOB, &GPIO_InitStructure);  
 
 GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource14);
 EXTI_InitStruct.EXTI_Line = EXTI_Line14;
 EXTI_InitStruct.EXTI_Mode=EXTI_Mode_Interrupt;
 EXTI_InitStruct.EXTI_Trigger=EXTI_Trigger_Falling; //下降沿触发中断
 EXTI_InitStruct.EXTI_LineCmd=ENABLE;
 EXTI_Init(&EXTI_InitStruct);


 NVIC_InitStructure.NVIC_IRQChannel= EXTI15_10_IRQn ; 
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2; 
 NVIC_InitStructure.NVIC_IRQChannelSubPriority =2;  
 NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;  
 NVIC_Init(&NVIC_InitStructure);  
 
}
 
void TIM4_Int_Init(u16 arr,u16 psc)
{
 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
 NVIC_InitTypeDef NVIC_InitStructure;
 
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); //时钟使能
 
 //定时器TIM4初始化
 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 
 TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值
 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim
 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
 TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的时间基数单位
 TIM_ClearITPendingBit(TIM4, TIM_FLAG_Update);
 TIM_ITConfig(TIM4,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断
 
 //中断优先级NVIC设置
 NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;  //TIM4中断
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;  //先占优先级1级
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;  //从优先级1级
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
 NVIC_Init(&NVIC_InitStructure);  //初始化NVIC寄存器    
}
 
 
 int main(void)
 {  
 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组2:2位抢占优先级,2位响应优先级
 delay_init();
 IOConfig();
 TIM4_Int_Init(107, 71);  //1M计数频率
 
 while(1)
 {
  if(len > 10)
  {
   len = 0;
   USART_Send(USART_buf,11);
  }
 }
}


void EXTI15_10_IRQHandler(void)
{
 if(EXTI_GetFlagStatus(EXTI_Line14) != RESET)
 {
  if(OI_RXD == 0) 
  {
   if(recvStat == COM_STOP_BIT)
   {
    recvStat = COM_START_BIT;
    TIM_Cmd(TIM4, ENABLE);
   }
  }
  EXTI_ClearITPendingBit(EXTI_Line14);
 }
}


void TIM4_IRQHandler(void)
{  
 if(TIM_GetFlagStatus(TIM4, TIM_FLAG_Update) != RESET)
 {
  TIM_ClearITPendingBit(TIM4, TIM_FLAG_Update); 
  recvStat++;
  if(recvStat == COM_STOP_BIT)
  {
   TIM_Cmd(TIM4, DISABLE);
   USART_buf[len++] = recvData; 
   return;
  }
  if(OI_RXD)
  {
   recvData |= (1 << (recvStat - 1));
  }else{
   recvData &= ~(1 << (recvStat - 1));
  } 
 }  
}

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • STM32
    +关注

    关注

    2265

    文章

    10870

    浏览量

    354692
  • uart
    +关注

    关注

    22

    文章

    1227

    浏览量

    101161
  • 串口通信
    +关注

    关注

    34

    文章

    1609

    浏览量

    55409

原文标题:基于STM32模拟UART串口通信

文章出处:【微信号:c-stm32,微信公众号:STM32嵌入式开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    IO模拟串口UART

    IO模拟串口UART 本文介绍GPIO模拟UART的算法和实现
    发表于 04-03 14:11 86次下载

    niosii的UART串口通信

    niosii的UART串口通信niosii的UART串口通信
    发表于 04-06 17:03 1次下载

    基于51单片机的UART串口通信

    基于51单片机的UART串口通信详解。
    发表于 11-21 10:14 6.3w次阅读
    基于51单片机的<b class='flag-5'>UART</b><b class='flag-5'>串口</b><b class='flag-5'>通信</b>

    串口通信的原理,IO口模拟UART串口通信

    UART串口波特率,常用的值是300、600、1200、2400、4800、9600、14400、19200、28800、38400、57600、115200等速率。IO口模拟UART
    的头像 发表于 05-04 15:26 2.2w次阅读
    <b class='flag-5'>串口</b><b class='flag-5'>通信</b>的原理,IO口<b class='flag-5'>模拟</b><b class='flag-5'>UART</b><b class='flag-5'>串口</b><b class='flag-5'>通信</b>

    C51的UART 串口通信

    C51的UART 串口通信
    发表于 11-29 12:21 11次下载
    C51的<b class='flag-5'>UART</b> <b class='flag-5'>串口</b><b class='flag-5'>通信</b>

    STM32F407的串口UART 基础配置STM32CubeMX

    STM32F407的串口UART 基础配置STM32CubeMX
    发表于 11-29 16:06 54次下载
    <b class='flag-5'>STM32</b>F407的<b class='flag-5'>串口</b><b class='flag-5'>UART</b> 基础配置<b class='flag-5'>STM32</b>CubeMX

    基于STM32UART串口通信协议(一)详解

    F429开发板来举例讲解(其他STM32系列芯片大多数都可以按照这些步骤来操作的),如有不足请多多指教。2、UART简介  嵌入式开发中,UART串口
    发表于 11-30 14:36 22次下载
    基于<b class='flag-5'>STM32</b>之<b class='flag-5'>UART</b><b class='flag-5'>串口</b><b class='flag-5'>通信</b>协议(一)详解

    STM32 串口通信实验

    stm32串口通信实验UART通信实验(通用异步收发器)UART
    发表于 12-20 19:26 15次下载
    <b class='flag-5'>STM32</b> <b class='flag-5'>串口</b><b class='flag-5'>通信</b>实验

    STM32 HAL库 CubeMX教程(五)串口通信基础

    STM32 HAL库 CubeMX教程(五)串口通信基础串口通信简介CubeMX配置初始化程序分析程序编写
    发表于 12-24 18:49 12次下载
    <b class='flag-5'>STM32</b> HAL库 CubeMX教程(五)<b class='flag-5'>串口</b><b class='flag-5'>通信</b>基础

    STM32F103VE USART & UART串口通信

    STM32F103VE共有5个串口功能,其中USART1,USART2,USART3为通用同步异步串口通信UART4,
    发表于 12-24 19:06 24次下载
    <b class='flag-5'>STM32</b>F103VE USART & <b class='flag-5'>UART</b><b class='flag-5'>串口</b><b class='flag-5'>通信</b>

    STM32-UART串口通信

    STM32-UART串口通信一、UART数据传输过程1.字符发送首先在初始化完USART的时候,但我们要发送一个字节的数据,那么先把这个数据写进USART_DR,这个时候TXE (Tr
    发表于 12-28 19:34 12次下载
    <b class='flag-5'>STM32-UART</b><b class='flag-5'>串口</b><b class='flag-5'>通信</b>

    单片机IO口模拟UART串口通信

    为了让大家充分理解 UART 串口通信的原理,我们先把 P3.0 和 P3.1 当做 IO 口来进行模拟实际串口
    发表于 02-09 10:25 24次下载
    单片机IO口<b class='flag-5'>模拟</b><b class='flag-5'>UART</b><b class='flag-5'>串口</b><b class='flag-5'>通信</b>

    STM32模拟串口(UART)使用

    首先我们先添加相应的头文件。既然我们要进行对串口模拟,因此我们要先了解uart相关的通信协议。由于UART
    的头像 发表于 03-22 15:56 6185次阅读

    基于STM32模拟UART串口通信工作原理

    UART即通用异步收发器,是一种串行通信方式。数据在传输过程中是通过一位一位地进行传输来实现通信的,串行通信方式具有传输线少,成本底等优点,缺点是速度慢。
    发表于 08-03 10:07 742次阅读
    基于<b class='flag-5'>STM32</b>的<b class='flag-5'>模拟</b><b class='flag-5'>UART</b><b class='flag-5'>串口</b><b class='flag-5'>通信</b>工作原理

    UART串口通信协议是什么?

    UART (Universal Asynchronous Receiver/Transmitter) 是一种通信接口协议,用于实现串口通信。它是一种简单的、可靠的、广泛应用的
    的头像 发表于 03-19 17:26 1241次阅读