0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

后摩尔时代的Chiplet D2D解决方案

芯耀辉科技 来源:芯耀辉科技 2023-06-26 14:24 次阅读

摘要:在后摩尔时代,集成电路设计理念正向Chiplet架构转变。本文从D2D接口IP设计,D2D封装和D2D测试三个方面介绍了Chiplet D2D的解决方案,并给出了采用此解决方案的XSR 112G D2D的测试结果。

1.后摩尔时代向Chiplet的战略转变

当前摩尔定律逐步趋向物理极限,半导体行业正在发生重大的战略转变。基于Chiplet架构的芯片设计理念逐渐成为行业主流。这一战略转变的驱动因素主要有以下几种:

1)单芯片的尺寸变得太大,无法制造;

2)充分利用已有KGD(Known Good Die)芯片实现复杂功能芯片,可以减少设计周期和成本,并提高良率。

在这些驱动因素下,整个Chiplet行业在2031年有望达到471.9亿美元[1],如图1所示,Chiplet市场在2021~2031十年期年复合增长率保持36.4%;其中实现Die to Die(D2D)互连的接口IP市场在2026达到3.24亿美元[2],D2D IP市场在2021~2026五年期年复合增长率高达50%,如下图2所示。

6fc0c740-13e7-11ee-962d-dac502259ad0.png

图1 Chiplet市场

6fcaea04-13e7-11ee-962d-dac502259ad0.png

图2 D2D IP市场趋势

Chiplet应用场景主要分两种,第一种是将同工艺大芯片分割成多个小芯片,然后通过接口IP互连在一起实现算力堆叠;第二种是将不同工艺不同功能的芯片通过接口IP互连并封装在一起实现异构集成,如图3所示。算力堆叠主要应用于CPU、TPU和AI芯片等,对接口IP的要求是低延迟和低误码率,通常采用并行接口IP。异构集成,主要应用于CPU、FPGA通信芯片等,对接口IP的要求是标准化,兼容性,可移植性和生态系统等,通常采用串行接口IP。

6fd58d38-13e7-11ee-962d-dac502259ad0.png

图3 典型应用场景

为了便于组装不同供应商开发的芯粒,需要标准化的芯粒间互连标准,行业联盟已共同定义出多种芯粒互连标准,如XSR,BoW,OpenHBI,UCIe等。它们的主要性能指标如图4所示。其中,XSR采用差分串行结构,目前最高速率达112Gbps,可用于异构集成连接IO die;后3种采用单端并行结构,目前最高速率是UCIe的32Gbps, 同时它还定义了完整的协议层,继承了CXL和PCIe的生态优势,可用于算力堆叠中计算IP间的互连。

6fe72b56-13e7-11ee-962d-dac502259ad0.png

图4 主流D2D的关键指标

完整的D2D解决方案包括:D2D接口IP设计、D2D封装设计和D2D测试,下面分别做详细介绍。

2.D2D接口IP设计解决方案

D2D接口IP由物理层(PHY)和控制器组成,如下图5所示。物理层PHY是封装介质的电气接口。从分层结构上分为模拟PHY和数字PHY,模拟PHY包括电气AFE(发射器、接收器)以及边带信道,可实现两个晶粒之间的参数交换和协商。数字PHY包括链路初始化、训练和校准算法以及测试和修复功能。从接口类型上分并行接口和串行接口。

控制器由链路层(Link layer)和逻辑物理层(Physical Layer Logical)。链路层负责上层协议接口适配,协议仲裁和协商,以及基于 CRC,可选的FEC(Forward Error Correction)和重传机制来确保链路可靠地传输数据;逻辑物理层负责链路训练和管理功能以及具体的PHY适配(比如加扰,解扰,块对齐,OS插入和提取等)。在链路初始化时,逻辑物理层会等待 PHY 完成链路初始化,通过链路状态机进入工作模式。链路层会通过协商确定使用哪个协议(如果实施了多个协议)。控制器向上支持CXS、AXI、FDI(Filt aware D2D interface)接口来支持PCIe、CXL、UCIe以及SOC和RAW协议层;向下兼容RDI(Raw D2D interface)和PIPE接口来适配不同的物理电气层[3][4][5]。

下面分别介绍一下并口和串口的D2D PHY架构。

700e2be8-13e7-11ee-962d-dac502259ad0.png

图5 D2D分层架构

2.1 并口D2D PHY架构

为了满足低延迟,高能效,低误码率要求,物理层接口采用单端并口传输,使用2.5D封装形式。并口D2D物理层结构如图6所示:

701d21a2-13e7-11ee-962d-dac502259ad0.png

图6 并口D2D PHY系统框架

并口物理层模拟部分包括4个LM(Lane module),每个LM数据位宽为单向16bit,共64bit。可以根据所需带宽灵活配置LM数目。每个LM还可以配置1~2个Slicer用于Filt Header或CRC校验。每Lane具备高精度和高解析度自校准延迟线,RX线性连续时间均衡器(CTLE)和DFE均衡器以实现高速性能,并根据走线长度可关闭DFE均衡器,以降低功耗。

并口物理层数字部分包括的功能块有RDI_TX/RX_MAP实现RDI接口到LM的映射;SPU(Sideband Process Unit)/TFSM(Train FSM)/LSM(Link SM)实现PHY启动,Lane修复/反转,TX/RX训练,VREF训练,眼图训练,自适应,链路状态管理,链路双方配置等功能。

芯耀辉实现的并口物理层采用DDR模式传输数据,数据率为16Gbps,符合UCIe和CCITA发布的《小芯片接口总线技术要求》标准;使用Forward clock模式简化接收端设计,可以减小延迟,降低功耗;延迟时间从本端FDI到对端FDI小于2ns;能效0.5~1pJ/bit。

2.2串口D2D PHY架构

为了满足高带宽,较长距传输,较低封装成本的要求,物理层接口采用差分串口传输,使用2D substrate封装形式。串口D2D物理层结构如下图7所示:

702c3e12-13e7-11ee-962d-dac502259ad0.png

图7 串口D2D PHY架构

串口物理层模拟部分包括8通道Analog Lane,每通道由TX和RX组成,可实现双向8通道全双工差分信号传输,兼容NRZ和PAM4信令,数据率覆盖2.5~112Gbps[6]。为适应较差的信道,TX采用3 Taps FFE均衡器,RX采用线性均衡器。为了优化延迟,时钟架构可采用Forward clock架构。为了优化功耗,每个通道可独立开关,独立运行。

串口物理层数字部分包括PMA Digital Control和PHY处理单元(PPU)。主要实现PHY上下电时序控制;上电时TX/RX校准、自适应算法及顺序控制;正常运行时,实时自适应校准;内建测试逻辑控制等功能。

芯耀辉实现的串口物理层兼容CEI-112G-XSR协议,最高速率达112Gbps,可均衡通道损耗达-10dB,带宽线密度约1Tbps/mm,能效1.5pJ/bit,延迟时间小于6ns,误码率小于1e-15。

3.D2D封装方案

适合D2D的封装类型包括传统的2D有机基板(Substrate),先进2.5D封装(RDL Fanout和Silicon Interposer)及3D封装(Hybrid Bonding)。具体选用那种封装类型,需综合考虑IO数量,IO密度,数据率,成本,复杂度和接口类型等因素,如图8所示[7]。通常对于高速串行接口,数据率越高,IO数量越少,IO密度越低,复杂度和成本也越低,建议采用2D或者RDL Fanout 2.5D封装类型。对于高密度并行接口,数据率越低,IO数量越多,IO密度越高,复杂度和成本也越高,建议采用2.5D或者3D封装类型。

703fec32-13e7-11ee-962d-dac502259ad0.png

图8 D2D封装类型选择

考虑到出Pin密度,电源Drop,信号完整性,减小基板层数,降低成本等因素。Bump map和互连走线采用如图9所示结构[2]。图中TX信号bump和RX信号bump分开单独放一起,可以方便对端Die的互连,减小走线间Cross talk;两个Die之间bump采用相隔近的与相隔近的互连,相隔远的与相隔远的互连,可以减少基板叠层,减小信号走线间交叠,从而减少成本,提高信号完整性。但这样会造成线与线间延迟时间的轻微差别,可以通过Die内Deskew功能去除。从信号完整性角度来看,还需要考虑Bump阻抗不连续,Via阻抗不连续,走线阻抗不连续和噪声耦合等问题。

7057926a-13e7-11ee-962d-dac502259ad0.png

图9 Bump map方案

封装设计好后,需要抽取S参数,并利用IBIS-AMI模型验证信号质量。能建模IBIS-AMI并验证走线S参数的工具有很多,它们中大部分都提供了自动化IBIS-AMI建模流程,可以基于图形界面设计[8]。如图10和图11所示,用户可以使用软件内建的常用算法模型,来快速对TX的FFE去加重预加重均衡和模拟输出(AnalogOut)以及RX的模拟输入(AnalogIn),CTLE连续时间线性均衡,AGC自动增益放大, DFE自适应判决反馈均衡和CDR时钟恢复等进行建模,既可设置为NRZ模式也可设置为PAM4模式,而且内建的Channel模型可以很方便调用Touchstone格式的通道S参数。

图10中,Channel调用的通道S参数为-10dB@28GHz;TX设置为NRZ模式,数据率为56Gbps,摆幅为500mV,输入信号为PRBS31,FFE均衡不使能;RX 设置CTLE gain-boost从0dB到-10dB,AGC增益设置为1,DFE不使能,CDR使能。仿真得到的眼高175mV,眼宽15.76ps,COM为15.7dB。图11中,将设置改为PAM4模式,数据率为112Gbps,输入信号为QPRBS13,其它不变的情况下。仿真得到的眼图的三个眼高基本一致为40mV,眼的线性度RLM为99.8%。

707ea1ac-13e7-11ee-962d-dac502259ad0.png

图10

用IBIS-AMI模型进行NRZ信号通道分析

70a9835e-13e7-11ee-962d-dac502259ad0.png

图11

用IBIS-AMI模型进行PAM4信号通道分析

4.D2D测试方案

以串口D2D为例。为了全面测试和debug数据链路,D2D接口IP在设计时,需考虑全面的环回测试路径,如图12所示。数据通路测试路径包括:数字侧近端环回路径A:本端数字部分内环测试;模拟侧近端环回路径B:本端模拟部分内环测试;模拟侧远端环回路径C:对端模拟部分外环测试;数字侧远端环回路径D:对端数字部分外环测试。时钟通路测试路径包括:时钟近端环回路径E:本端发送时钟至接收时钟的环回测试;时钟远端环回路径F:对端接收时钟至发送时钟的环回测试。

70c21946-13e7-11ee-962d-dac502259ad0.png

图12 环回测试模式

由于D2D高速引脚一般封装在Package内,不引出。这样对D2D IP的测试造成了一定的不方便。因此,测试方案和Package设计都需要特殊考虑。如图13所示[9][10],测试需要2个Die(Octal Macro)实现TX到RX的环回测试。为了验证D2D IP能过不同的通道损耗,通道损耗设计为1dB~10dB@28GHz。为了真实测试出D2D IP的性能,需要对从PCB连接器处到封装基板的走线做去嵌处理。

70cc75c6-13e7-11ee-962d-dac502259ad0.png

图13

D2D test setup and package view

采用以上测试方案,通道损耗为-10dB@28GHz时,芯耀辉设计的112G 串口D2D 样片TX输出的测试结果如图14所示。图中56G-NRZ测试采用PRBS31码型,眼高为363mV,Rj为345fs(rms);56G-PAM4测试采用QPRBS13码型,三个眼高从上到下分别为224.6mV,235.6mV,229.0mV,RLM=97.7%;112G-PAM4测试采用QPRBS13码型,三个眼高从上到下分别为为99mV,109.2mV,97mV,RLM=95.3%。测试结果满足CEI-112G-XSR协议要求。

70e435e4-13e7-11ee-962d-dac502259ad0.png

图14XSR D2D TX测试结果

5.结束语

多晶粒Chiplet已成为芯片设计行业主流系统方案,D2D接口规范为设计人员带来了极具竞争力的性能优势,包括高能效 (pJ/b),高带宽线密度 (Tbps/mm) 和低延迟 (ns),支持主流IO协议以及任何用户定义的协议,支持多种封装类型。本文从接口IP设计到封装设计再到测试方案,详细介绍了Chiplet D2D解决方案。参照此方案可轻松实现多晶粒系统互连。

2022年4月,芯耀辉作为首批会员加入了UCIe组织,推出支持UCIe协议且兼容多样化D2D和C2C场景的“并口D2D PHY IP”以及高能效比和高宽带利用率的“串口112G D2D SerDes PHY IP”的完整D2D解决方案,如图15所示。同年10月,芯耀辉承接了国家科技部重点研发专项,作为国家队成员着力推动国内Chiplet标准CCITA的产业化落地。公司一直专注于高速接口IP领域,积累了丰富的经验和技术能力,已经为客户提供了5G、数据中心网络交换机等相关芯片IP产品,率先实现了市场客户的量产。随着产业进一步的发展,以及相关的下游的封装等一些技术的成熟,Chiplet在国内的发展前景可期。

70ffd538-13e7-11ee-962d-dac502259ad0.png

图15 芯耀辉完整IP解决方案

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 封装
    +关注

    关注

    127

    文章

    7948

    浏览量

    143114
  • IP
    IP
    +关注

    关注

    5

    文章

    1712

    浏览量

    149676
  • chiplet
    +关注

    关注

    6

    文章

    434

    浏览量

    12607

原文标题:特刊收录丨后摩尔时代的Chiplet D2D解决方案

文章出处:【微信号:AkroStar-Tech,微信公众号:芯耀辉科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    Alpahwave Semi推出全球首个64Gbps UCIe D2D互联IP子系统

    半导体连接IP领域的领先企业Alpahwave Semi近日宣布了一项重大突破,成功推出了全球首个64Gbps高速UCIe D2D(裸片对裸片)互联IP子系统。这一创新成果标志着Alpahwave
    的头像 发表于 12-25 14:49 253次阅读

    对话郝沁汾:牵头制定中国与IEEE Chiplet技术标准,终极目标“让天下没有难设计的芯片”

    增加更多晶体管变得愈发困难,成本大幅攀升,业界不得不探索其他技术路线。 作为当今“摩尔时代”的芯片设计技术, Chiplet(芯粒、小芯片) 应运而生。与传统 SoC 芯片设计方法不同,Ch
    的头像 发表于 12-10 14:35 280次阅读
    对话郝沁汾:牵头制定中国与IEEE <b class='flag-5'>Chiplet</b>技术标准,终极目标“让天下没有难设计的芯片”

    高带宽Chiplet互连的技术、挑战与解决方案

    需求,业界采用了基于Chiplet的设计方法,将较大系统分解为更小、更易于管理的组件,这些组件可以分别制造并通过先进封装技术进行集成[1]。 先进封装技术 先进封装技术可以大致分为2D、2.5D和3
    的头像 发表于 12-06 09:14 307次阅读
    高带宽<b class='flag-5'>Chiplet</b>互连的技术、挑战与<b class='flag-5'>解决方案</b>

    回顾:奇异摩尔@ ISCAS 2024 :聚焦互联技术与创新实践

    chiplet interface circuit 研究工作组 (CIC-SG) 成员,进行了《Design Considerations on Die-to-Die Interconnect in Advanced Package》为主题的技术报告,分享了“先进封装中的 D2
    的头像 发表于 11-05 18:29 568次阅读
    回顾:奇异<b class='flag-5'>摩尔</b>@ ISCAS 2024 :聚焦互联技术与创新实践

    高密度互连,引爆摩尔技术革命

    领域中正成为新的创新焦点,引领着超集成高密度互连技术的飞跃。通过持续的技术创新实现高密度互连,将是推动先进封装技术在后摩尔时代跨越发展的关键所在。
    的头像 发表于 10-18 17:57 295次阅读
    高密度互连,引爆<b class='flag-5'>后</b><b class='flag-5'>摩尔</b>技术革命

    UCIe规范引领Chiplet技术革新,新思科技发布40G UCIe IP解决方案

    了近3倍,算力提升了6倍,这背后离不开Chiplet(小芯片)设计方案的引入。Chiplet技术,作为“摩尔定律
    的头像 发表于 10-16 14:08 400次阅读

    智原科技与奇异摩尔2.5D封装平台量产

    近日,ASIC设计服务暨IP研发销售厂商智原科技(Faraday Technology Corporation)与AI网络全栈式互联产品及解决方案提供商奇异摩尔宣布,双方共同合作的2.5D封装平台已成功迈入量产阶段。
    的头像 发表于 10-14 16:43 423次阅读

    高算力AI芯片主张“超越摩尔”,Chiplet与先进封装技术迎百家争鸣时代

    越来越差。在这种情况下,超越摩尔逐渐成为打造高算力芯片的主流技术。   超越摩尔摩尔定律时代三大技术路线之一,强调利用层堆叠和高速接口技
    的头像 发表于 09-04 01:16 3375次阅读
    高算力AI芯片主张“超越<b class='flag-5'>摩尔</b>”,<b class='flag-5'>Chiplet</b>与先进封装技术迎百家争鸣<b class='flag-5'>时代</b>

    创新型Chiplet异构集成模式,为不同场景提供低成本、高灵活解决方案

    颗是原生支持Transformer全系算子的AI Chiplet“大熊星座”。   Chiplet 集成模式提供低成本、高灵活解决方案   随着摩尔定律逐步放缓以及先进封装等技术的发展
    的头像 发表于 08-19 00:02 3371次阅读

    剖析 Chiplet 时代的布局规划演进

    3D-IC和Chiplet设计所带来的挑战及其对物理布局工具的影响,并讨论EDA(电子设计自动化)供应商如何应对这些挑战。 Part 1 3D-IC 和异构芯片出现对设计带来的影响 3D
    的头像 发表于 08-06 16:37 414次阅读
    剖析 <b class='flag-5'>Chiplet</b> <b class='flag-5'>时代</b>的布局规划演进

    西门子EDA创新解决方案确保Chiplet设计的成功应用

    这些要求,因此,多芯片集成(如Chiplet设计)成为了一种新的趋势。   Chiplet设计 带来的挑战及行业解决方案 Chiplet设计带来了许多优势,同时也带来了众多新的挑战。这
    的头像 发表于 07-24 17:13 626次阅读

    广东3D扫描钣金件外观尺寸测量3D偏差检测对比解决方案CASAIM

    3D扫描
    中科院广州电子
    发布于 :2024年07月22日 16:13:45

    Teledyne e2v公司和Airy3D公司合作,提供更实惠的3D视觉解决方案

    来源:半导体芯科技编译 Teledyne e2v 是 Teledyne Technologies 的子公司,也是成像解决方案的全球创新者,它很高兴地宣布与领先的 3D 视觉解决方案提供
    的头像 发表于 05-11 10:12 423次阅读
    Teledyne e<b class='flag-5'>2</b>v公司和Airy3<b class='flag-5'>D</b>公司合作,提供更实惠的3<b class='flag-5'>D</b>视觉<b class='flag-5'>解决方案</b>

    高精度纳米级压电位移平台“PIEZOCONCEPT”!

    高精度纳米级压电位移平台“PIEZOCONCEPT”半导体界摩尔时代的手术刀!第三代半导体是摩尔时代实现芯片性能突破的核心技术之一,优越性能和广泛的下游应用使相关厂商存在良好发展前
    的头像 发表于 01-26 08:16 804次阅读
    高精度纳米级压电位移平台“PIEZOCONCEPT”!

    2023年Chiplet发展进入新阶段,半导体封测、IP企业多次融资

    电子发烧友网报道(文/刘静)半导体行业进入“摩尔时代”,Chiplet新技术成为突破芯片算力和集成度瓶颈的关键。随着技术的不断进步,先进封装、IC载板、半导体IP等环节厂商有望不断获益
    的头像 发表于 01-17 01:18 2222次阅读
    2023年<b class='flag-5'>Chiplet</b>发展进入新阶段,半导体封测、IP企业多次融资