0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

星星之火,可以燎原——关于太赫兹的技术进展

英利检测 2023-06-28 06:00 次阅读

盼望着,盼望着,5G来了,6G的脚步也近了。除了做好现有的技术工作,作为通信人还要不断关注新技术的发展,真心不易!无线数据链路的容量在过去十几年中呈指数级增长,但对更高数据速率的需求持续增加。在未来几年内,这一增长预计还会加速,甚至超过第五代(5G)无线通信6-8倍的容量。也许下一代无线通信技术会将工作频率推入太赫兹(THz) 范围,以满足这一预测的需求。

就这样有关太赫兹研究的消息铺天盖地地来了,即使不能说是排山倒海,也可以说是鳞次栉比了。索性太赫兹的系统还处于“花褪残红青杏小”的阶段,并不成熟,要想解决通信系统中从信源到发射,到信道,再到接收的一揽子问题,还有太多的不完善,研究成果也是星星点点,无法形成一整套可靠而有效的系统。后面会陆续梳理一些有关太赫兹方面星星点点的技术进展,供大家了解。也真心希望星星之火,可以燎原......

太赫兹档案

太赫兹的命名来源于它的振荡频率在10^12 Hz(1THz=10^12 Hz)。电磁波谱的太赫兹部分介于光学电子区域(红外微波波长)之间。在电子学领域里,这一频段的电磁波又被称为毫米波和亚毫米波;而在光谱学领域,它也被称为远红外(IR:Infrared Radiation)射线。一般称谓的太赫兹波段,其频率范围为0.1~10 THz,在有些场合特指0.3~3 THz,还有些时候被赋予一种广义的定义,其频率范围可包含高达100 THz的波,这包括整个中,远红外波段,如下图所示。

get?code=YTQ4ZTQ2NzAyMTZmZTEyODhhMmFmZDIwOWEwMGU3NGIsMTY4NzgzNjU5MDY2Ng==

自然界中拥有大量的太赫兹辐射源,我们身边绝大多数物体的热辐射都在太赫兹波段。所有发光物体的50%的能量和宇宙大爆炸的98%的光子能量都位于亚毫米波段和远红外区域。即便如此,在20世纪八十年代以前,也并没有能够高效率地产生太赫兹的发射源和灵敏的探测设备。所以不像微波和光学,太赫兹技术的发展非常的受限。

近三四十年来,随着超快光电子技术、半导体等技术的发展为太赫兹波提供了稳定、可靠的光源,太赫兹波的研究才被广泛地开展起来。特别是在太赫兹光谱和成像等技术被开发之后,太赫兹技术表现出了广泛的应用前景。如今对太赫兹波的研究涉及物理、化学和生物学等基础研究领域,一些成果已经被应用于材料、国防、医学、信息等技术领域。

从最基本的说起:

由于太赫兹波段处于电子学和光学这两个研究领域之间,所以仅仅利用电子学或者光学的技术和器件都不能完全满足太赫兹波的需要,只有结合两方面的知识,开发全新的技术和元器件,以适应太赫兹波独特的性质,才能对该波段的电磁波进行深入研究和开发利用,这就是在很长的一段时间里电磁波谱存在着一个太赫兹空隙的原因,下图显示了低频电磁波和光波发射的不同机制。

get?code=NDdjNTUxNTIzOGQ2MGZhYTllOWQyNjNkODRlMmRiNzIsMTY4NzgzNjU5MDY2Ng==

我们所熟知的右边的电路形式,是电子学领域的频率计算公式ω=1/√(LC),或者f=1/[2π√(LC)],其中f为频率,单位为;L为电感,单位为亨利(H);C为电容,单位为法拉(F)。LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号

左边光波发射的机制呢?首先要说说这个h,普朗克常量,马克思.普朗克在1900年研究物体热辐射的规律时发现,电磁波的发射和吸收不是连续的,而是一份一份地进行的。这样的一份能量叫做能量子,每一份能量子等于hν,ν为辐射电磁波的频率,h为一常量,叫为普朗克常数(6.62607015×10^-34焦耳·秒),而ћ=h/(2π),念做"h拔",是角动量的最小衡量单位,即角动量量子。普朗克常数用以描述量子化、微观下的粒子,如电子及光子。例如,一束具有固定频率 ν 的光,其能量 E可表示为:E=hν。

所以1 THz的波长为0.3mm,1 THz的光子能量为:

hν=6.62607015×10^-34J·s×10^12Hz =6.62607015×10^-22J,

若以eV·s(电子伏特·秒)为能量单位,则1 THz的光子能量为:

hν=(6.62607015×10^-34J·s)×(10^-12Hz)/(1.602176634×10^-19J)=4.1meV

什么是电子伏特呢?一个eV是指一个电子(或其他单电荷(q=1.6*10^-19库仑)粒子)在经历1伏特的电势差时获得的能量。

1 eV=1.602176634×10^-19焦耳;1 meV,即1毫电子伏0.001 eV。

这个能量是非常小的,相比于X射线的千电子伏特的光子能量,太赫兹辐射的光子能量在毫电子伏特的数量级。这个数量级别的能量低于各种化学键的键能,所以不会引起各种有害的电离反应,对人体和生物体是安全的,这对一些针对身体的安全检查和对生物样品的检测等应用非常重要。下图可以看到从光子能量的角度出发,各个波段的电磁波能量:

get?code=Y2E5NjBmZDgxZDNiNGJlYmEyNWFkZGUxNzJkNjBmZDgsMTY4NzgzNjU5MDY2Ng==

今天先介绍这么多,有关太赫兹的其他故事,我们下回再见。

以上文章来源网络,如有涉及侵权,请联系删除!我们一直在关注这方面的发展,对话题有不同见解的欢迎一起讨论。

国家高新技术企业;唯一覆盖中国和欧美运营商认证服务机构;业内最为优秀第三方认证服务商之一;专业的人做专业的事;

入库:┆移动┆联通┆电信┆中国广电┆

欧美:┆GCF┆PTCRB┆VzW┆ATT┆TMO┆FCC┆

中国:┆CCC┆SRRC┆CTA┆

号码:┆IMEI┆MAC┆MEID┆EAN┆

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 通信
    +关注

    关注

    18

    文章

    6021

    浏览量

    135947
  • 太赫兹
    +关注

    关注

    10

    文章

    336

    浏览量

    29174
收藏 人收藏

    评论

    相关推荐

    罗德与施瓦茨展示创新6G超稳定可调赫兹系统

    罗德与施瓦茨(以下简称“R&S”)在巴黎举办的欧洲微波周(EuMW 2024)上展示了基于光子赫兹通信链路的6G无线数据传输系统的概念验证,助力新一代无线技术的前沿探索。 在 6G-ADLANTIK 项目中开发的超稳定可调
    的头像 发表于 10-11 10:56 361次阅读

    关于赫兹波的介绍

    无线电波的透射率 赫兹可以传输通过各种材料传播包括纸张、塑料、陶瓷、木材、和纺织品。赫兹波使隐藏内部物质非破坏性分析并预计将引导新颖的
    的头像 发表于 09-29 06:18 214次阅读
    <b class='flag-5'>关于</b><b class='flag-5'>太</b><b class='flag-5'>赫兹</b>波的介绍

    赫兹拉曼光谱简

    图 1:显示不同光谱技术对应的电磁波谱。 拉曼光谱通常在可见光 (532 nm) 或近红外光 (785 nm) 中使用,而红外吸收光谱用于 5 μm至50 μm 的范围,赫兹光谱用于50 μm 至
    的头像 发表于 09-26 10:02 305次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>拉曼光谱简

    基于超强耦合超构原子的CMOS集成赫兹近场传感器设计

    近年来,电磁波谱中的赫兹(THz)部分已被证明是推动大量新研究方向的有利平台。
    的头像 发表于 05-30 09:19 2.5w次阅读
    基于超强耦合超构原子的CMOS集成<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>近场传感器设计

    柔性赫兹超构材料传感器,用于农药浓度检测

    近日,西安交通大学电信学部信通学院徐开达课题组与中物院微系统与赫兹研究中心开展合作研究,利用柔性衬底与石墨烯材料设计了一款应用于农药浓度检测的赫兹超构材料传感器。
    的头像 发表于 05-28 10:24 1826次阅读
    柔性<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>超构材料传感器,用于农药浓度检测

    赫兹时域光谱系统

    图1. 赫兹时域光谱测量结构图 赫兹时域光谱通过测量亚太赫兹至几十
    的头像 发表于 05-24 06:33 477次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>时域光谱系统

    脉冲赫兹信号的探测方式有哪几种

    脉冲赫兹信号的探测是赫兹科学技术领域的一个重要分支,它在材料检测、生物医学成像、安全检查以及高速通信等多个领域有着广泛的应用。
    的头像 发表于 05-16 18:26 1214次阅读

    可输出不同偏振赫兹波的光电导天线

    屹持光电推出的大面积光电导天线辐射源,具有不同的极化类型,并且具有激发面积大,转换效率高的优点。该系列赫兹光电导天线最显著的特点是:除了通常的线性极化外,还可以产生径向或者方位偏振的
    的头像 发表于 05-14 11:21 768次阅读
    可输出不同偏振<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>波的光电导天线

    赫兹关键技术及在通信里的应用

    赫兹波在自然界中随处可见,我们身边的大部分物体的热辐射都是赫兹波。它是位于微波和红外短波之间的过渡区域的电磁波,在电子学领域,这段电磁波称为毫米波和亚毫米波,在光学领域,又被称为远
    发表于 04-16 10:34 2155次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>关键<b class='flag-5'>技术</b>及在通信里的应用

    芯问科技赫兹芯片集成封装技术通过验收

    《半导体芯科技》杂志文章 芯问科技“赫兹芯片集成封装技术”项目近日顺利通过上海市科学技术委员会的验收。 该项目基于
    的头像 发表于 04-02 15:23 700次阅读

    宋仕强论道”系列讲座的文章暨宋仕强先生研究华强北模式和华强北文化的系列文章,再次迎来更新!

    的时间里,宋仕强先生的这一重磅力作被翻译成英文,相继被纽约日报、金融日报、华尔街日报、澳大利亚时报、澳洲早报等多家国外知名媒体火速转载,转载力度之大、速度之快、传播之广大有“星星之火可以燎原”之势! **
    发表于 03-26 10:36

    赫兹技术的国内外发展状况

    在材料鉴定方面,大多数分子均有相应的赫兹波段的“指纹”特征谱,研究材料在这一波段的光谱对于物质结构的性质以及揭示新的物质有着重要的意义。
    发表于 02-29 09:39 1202次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b><b class='flag-5'>技术</b>的国内外发展状况

    极化复用单载波高速率赫兹光电融合通信实验

    赫兹光电融合系统是未来6G高速通信重要的潜在技术手段,然而受限于大带宽的赫兹极化隔离器件、正交调制解调手段和基带信号在大带宽场景下的实时
    的头像 发表于 01-12 10:42 665次阅读
    极化复用单载波高速率<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>光电融合通信实验

    赫兹真空器件的重要组成部件

    赫兹波处于电磁波谱中电子学与光子学之间的空隙区域,具有不同于低频微波和高频光学的独特属性,在无线通信、生物医学、公共安全等军事和民用领域具有广泛的应用前景。赫兹
    的头像 发表于 01-04 10:03 1656次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>真空器件的重要组成部件

    用单像素赫兹传感器检测材料中的隐藏缺陷

    使用单像素光谱探测器快速检测隐藏物体或缺陷的衍射赫兹传感器示意图。 在工程和材料科学领域,检测材料中隐藏的结构或缺陷至关重要。传统的赫兹成像系统依赖于
    的头像 发表于 01-03 06:33 462次阅读
    用单像素<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>传感器检测材料中的隐藏缺陷