CMUT首先由M.I.Haller提出。CMUT 换能器是由多层结构和多层材料构成。CMUT电容单元结构如图 2 所示,从上到下依次为金属铝上电极氧化硅电气隔离层、绝缘体上硅(silicon on insulator,SOI)晶圆顶层硅制成的振动膜、在氧化硅上蚀刻的真空腔、氧化硅隔离层、硅衬底和金属铝底电极。在外界大气压强的作用下,薄膜向下凹陷。CMUT 在工作状态下需要在上下电极之间施加直流偏置电压,通过提高薄膜应力来提高灵敏度。
图2 CMUT 换能器单元结构
发射状态下,在上下电极板之间施加直流偏置,通过交流电压和直流偏置电压的叠加,使薄膜随着交流信号产生简谐振动,发生电能向机械能的转换,产生超声波;
图3 超声发射原理图
接收状态下,在上下电极板之间施加直流偏置,振动薄膜在受到超声波的声压作用而发生振动,引起电容值的改变,通过检测电容变化从而实现对超声波的检测,实现机械能向电能的转换。
图4 超声接收原理图
3.1 CMUT 换能器制备工艺过程
根据确定的 CMUT 参数,对换能器进行制备。
1)准备氧化层厚度为 500nm 的氧化片(低阻硅) 和器件层厚度为 2μm的 SOI 晶圆,器件层的2μm 薄膜将作为换能器单元的振动薄膜;如图5
图5 备片,氧化片和 SOI
2) 通过反应离子刻蚀(reactive ion-etching,RIE),在氧化硅氧化层表面刻蚀 300 nm 的空腔,用作 CMUT 换能器的真空腔隙;如图6
图6 RIE 刻蚀空腔
3)在真空环境下对刻蚀有空腔的氧化片和 SOI 晶圆器件层进行硅—硅键合,随即在高温退火炉中进行退火处理,使得晶圆间的范德华力作用转变为化学键作用;如图7
图7 硅 -硅键合
4)将键合片的埋氧层以上部分去除,用 BOE 漂洗掉顶层和底层的氧化硅,为背面金属附着做准备;如图8
图8减薄、BOE 漂洗氧化层
5)利用等离子增强化学气相淀积(plasma-enhanced chemical vapor deposition,PECVD)在振膜上表面生长 200 nm 的氧化硅作为振膜与上电极金属的电气隔离;如图9
图9 PECVD 沉积氧化硅
6)通过磁控溅射仪器在正反面溅射500nm 的金属铝,并对上表面金属通过磷酸腐蚀进行图形化,最后在真空退火炉中进行退火处理,用于修复晶格损伤并形成良好的欧姆接触;如图10
图10 做金属上下电极,退火
完成以上工艺后得到的芯片如下图11
图11 CMUT芯片效果图
-
芯片
+关注
关注
452文章
50150浏览量
420513 -
电容式
+关注
关注
0文章
346浏览量
52696 -
微机械
+关注
关注
0文章
20浏览量
11524 -
换能器
+关注
关注
8文章
343浏览量
29295
原文标题:CMUT电容式微机械超声换能器
文章出处:【微信号:gh_38186cae1d9a,微信公众号:秦岭农民】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论