0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

小鹏汽车新一代感知架构XNet信息解读

jf_C6sANWk1 来源:阿宝1990 2023-07-04 09:41 次阅读

在刚刚过去的CVPR会议上,作为国内唯一一家被邀请登台演讲的造车新势力,小鹏汽车向参会者介绍了小鹏汽车在国内量产辅助驾驶系统的经验。

作为小鹏汽车最新一代的感知架构,XNet在量产中发挥的作用不容小觑。

笔者有幸采访到小鹏汽车自动驾驶中心感知首席工程师 Patrick,更进一步得了解XNet的性能、架构,以及小鹏的自驾团队为搭建XNet所做的努力。

1.XNet实现的性能提升

XNet实现了感知结构的升级,拥有更好的性能,主要包括3个方面。

1.1超强环境感知能力,实时生成“高精地图”

d5e913a4-1a06-11ee-962d-dac502259ad0.png

XNet可以根据周围环境实时构建“高精地图”。从上图我们可以看到,车辆正在经过一个环岛,图中显示的车道线不是来自于高精地图,而是来自于XNet的感知输出。XNet不光可以输出车道线,还有停止线、人行道、可行驶区域等。这是将来小鹏汽车应对无图场景,做高级别城市辅助驾驶的最核心的能力之一。

1.2更强的360度感知,博弈更强、变道成功率更高

在上一代感知架构中,盲区问题很难解决。在最靠近本车的地方,尤其是车辆的下边界,感知系统的检测效果往往不好。XNet采用多相机多帧、前融合的感知方案,可以根据图像内的车身信息推测车辆在BEV视角下的3D位置信息,解决了相机上下视野受限的问题;还可以更加有效地同时融合多相机的信息,尤其是分节到两个相机视野中的物体,从而避免盲人摸象式的物体感知。

另外,输入包含时序信息的视频流后,XNet对近车物体的识别能力有大幅提升,可以更加稳定地检测到近车物体。那么,自动驾驶系统的博弈能力就更强,汽车变道的成功率更高。

1.3更精准识别动态物体速度和意图,博弈能力大幅提升;运动感知冗余,在城市场景安全性更高

XNet不仅能够检测物体的位置,还能够检测物体的速度甚至是完成对物体未来运动轨迹的预测。毫米波雷达通常很难检测在本车前横跨车道的车辆的速度,而XNet可以很容易地检测到这个速度,对毫米波雷达有明显的增强作用。在毫米波雷达比较擅长的场景,XNet也可以提供冗余,从而提高城市场景整体的安全度。

2.XNet的架构

XNet为什么可以实现更好的性能呢?Patrick介绍了XNet的具体架构和工作流程。

XNet采用多相机多帧的方式,把来自每一个相机的视频流,直接注入到一个大模型的深度学习网络里,进行多帧时序前融合,输出BEV视角下的动态目标物的4D信息(如车辆,二轮车等的大小、距离、位置及速度、行为预测等),以及静态目标物的3D信息(如车道线和马路边缘的位置)。

如下图所示。

d65525d0-1a06-11ee-962d-dac502259ad0.png

每张输入的摄像头图像经过网络骨干(backbone)和网络颈部(neck,具体来讲是BiFPN网络)后生成图像空间的多尺度特征图。

这些特征图经过XNet最关键的部分—BEV视图转换器(BEV view transformer)后,形成BEV下的单帧特征图。

不同时刻的单帧特征图在BEV视角下,根据自车的位姿进行时空融合,形成BEV下的时空特征图。

这些时空特征图是进行BEV解码推理的基础,在时空特征图后接两个解码器,完成动态XNet和静态XNet的结果解码和输出。动态结果包括pose、size、velocity等,静态结果包括boundary、mark line等。

至此,感知部分基本就完成了。

3.团队为搭建XNet所做的努力

要实现上述架构并不容易,在采集、标注、训练、部署四个方面,小鹏的自驾团队都做了大量的工作来优化整个流程。

3.1采集

实车数据和仿真数据是数据的两大来源。

小鹏有接近十万辆用户车,这些车都可以用来完成数据采集的任务。如下图所示,车端模型会报告自动驾驶系统目前处理得不够好的问题,针对这些问题,小鹏的自驾团队会在车端设置相应的触发器来定向采集相应的数据。然后,这些数据会被上传到云端,经过筛选和标注后用于模型训练和后续的OTA升级。

d6710c28-1a06-11ee-962d-dac502259ad0.png

此外,仿真数据也是数据的重要来源。吴新宙在1024科技日上举了一个例子—行车过程中,前面一辆大卡车因为轮胎脱落与地面摩擦起火,这种情形在实际生活中是极为罕见的。对于这样出现频率极低的情形,实车采集很困难,即使小鹏已经有了近十万辆量产车,收集到足够多的数据可能也需要数年时间。

对于这样的情形,仿真数据可以起到很好的辅助作用。如下图所示,小鹏的自驾团队可以根据实车数据,采用unreal5引擎产生成千上万个类似的case ,模拟各种各样车轮脱落的情形。

d6af8052-1a06-11ee-962d-dac502259ad0.png

当然,仿真数据不能滥用,需要尽可能地贴近现实。小鹏的自驾团队主要从光影真实和场景真实两方面来尽量保证仿真数据的真实性。

小鹏的自驾团队采用了技术上领先的unreal5作为渲染引擎,这样通过仿真生成的图片看起来比较真实,没有卡通感,保证了“光影真实”。

此外,生成仿真数据时,是先找到模型的弱势场景,然后对这些场景做数字孪生(digital twin),再在此基础上进行定向修改。具体来说,可以先用4D自动标注从真实场景里提取4D结构化信息—包括动态物体的4D轨迹、和静态场景的3D布局等,然后用渲染引擎对结构化信息进行渲染填充,形成仿真图片。这样,生成的场景就是在模拟真实世界可能发生的场景,保证了“场景真实”。

3.2标注

要训练XNet,需要50万到100万个短视频,其中的动态目标的数量可能是数亿级甚至十亿级的。按照当前人工标注的效率,需要1000人的团队花两年时间才能完成训练XNet所需数据的标注。

小鹏汽车打造了全自动标注系统,此系统的标注效率是人工的近45000倍,全自动标注系统仅需16.7天就可以完成标注工作。此外,全自动标注系统质量更高,信息更全(包含3D位置、尺寸、速度、轨迹等信息),产量更大(峰值日产 30000 clips,相当于 15个NuScene数据集 )。

全自动标注系统是如何做到高效的呢?

首先,从人工标注到自动标注,人的角色发生了很大的变化。人工标注场景下,人是标注员;在自动标注场景下,人是质检员,只是去判别和纠正自动标注系统做的不好的地方,人效会有数量级的提升。

其次,在自动标注场景下,占数据集大多数的训练数据是自动化质检的,只有评测数据集是人工质检,需要人工操作的数据量有数量级的减少。

最后,自动标注让产出瓶颈从人力资源转到了计算资源。在云端,计算资源可以很方便地拓展,可以灵活地按需部署大量资源进行生产。

3.3训练

小鹏与阿里云合作打造了中国最大的自动驾驶计算中心—“扶摇”,“扶摇”的算力可达600PFLOPS,相当于成千上万个Orin组成的训练平台。借助扶摇的强大算力,小鹏的自驾团队采用云端大规模多机训练的方式,把XNet的训练时间从276天缩短到了11个小时,实现了602倍的训练效率的提升。

如下图所示,假如采用单机全精度方式,训练整个XNet需要276天。小鹏的自驾团队通过优化训练scheme从而减少epoch、优化网络结构和算子、为Transformer定制混合精度训练的方式,将单机训练时间从276天缩短到了32天。然后,团队充分利用云端算力,将单机训练改为80机并行训练,训练时间从32天缩短到了11小时。

d6c87954-1a06-11ee-962d-dac502259ad0.png

此外,团队引入了Golden Backbone模型,将基础网络能力的提升和模型的发布解耦,实现了训练效率的提升。具体来说,如下图所示,Golden Backbone可以和数据挖掘、自动标注、自动驾驶超算平台等形成一个闭环。在这个环里,只要有持续的数据输入,Golden Backbone的能力就可以持续地得到优化。需要发布模型的时候,只需在Golden Backbone的基础上做一些优化,而无需从头开始训练。

d6e7b562-1a06-11ee-962d-dac502259ad0.png

3.4部署

在部署层面,小鹏的自驾团队有很多积累。经过团队优化后,Transformer的运算时间减少到了原来的5%。此外,原本需要122%的Orin-X算力才能运行的模型,现在只需9%的Orin-X算力就能运行。

在部署上,小鹏的自驾团队有哪些亮点呢?根据Patrick的介绍,主要是分三步走。

“首先是Transformers层的重写。经过对模型板端运行时间的分析,我们发现原版的Transformers层占用时长是大头。于是,我们尝试了很多种Transformers的变种构建方法,找到了一个模型效果好,在板端运行快的版本。”

“然后是网络骨干的剪枝。我们重写了Transformers以后发现,网络骨干(backbone)是我们的性能瓶颈。于是我们对网络骨干进行了剪枝,降低了骨干部分的运行时间。”

“最后是多硬件的协同调度。在我们的基于Orin-X的计算平台上,有三种计算单元—GPU、DLA还有CPU。这三种硬件对网络的不同算子的支持度各有不同。我们把网络的不同构件放到最适合它运行的地方,然后统一调度三种计算硬件,让三者协同完成网络推理。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 驾驶系统
    +关注

    关注

    0

    文章

    20

    浏览量

    6595
  • 小鹏汽车
    +关注

    关注

    4

    文章

    517

    浏览量

    14719
  • 高精地图
    +关注

    关注

    0

    文章

    27

    浏览量

    2639

原文标题:小鹏汽车新一代感知架构XNet信息解读

文章出处:【微信号:阿宝1990,微信公众号:阿宝1990】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    政策解读 | 加快新一代信息技术全方位全链条应用

    制造业是国家经济的命脉所系,加快制造业数字化转型是构建现代化经济体系、实现经济高质量发展的必然要求。当前,以人工智能、移动通信、物联网等为代表的新一代信息技术加速突破应用,向经济社会方方面面广泛渗透、深度融合,不仅成为推动经济高质量发展的动力源,也是决定产业国际竞争力的关
    的头像 发表于 11-09 01:09 148次阅读
    政策<b class='flag-5'>解读</b> | 加快<b class='flag-5'>新一代</b><b class='flag-5'>信息</b>技术全方位全链条应用

    汽车申请IRONMAN商标

    汽车最新商标动态引发关注。据天眼查知识产权信息透露,广东小汽车科技有限公司近日已正式申请注册“XPENG IRONMAN”、“Iron
    的头像 发表于 09-05 17:14 531次阅读

    P7+将于第四季度发布

    汽车董事长何小在最新财报电话会上宣布了项重要消息:小汽车将于今年第四季度隆重推出
    的头像 发表于 08-27 15:52 304次阅读

    汽车与大众汽车深化合作,共绘电子电气架构新篇章

    7月22日,小汽车在香港交易所发布重大合作公告,正式宣告与全球汽车巨头大众汽车集团携手迈入全新合作阶段,双方签署了关于电子电气架构技术的战
    的头像 发表于 07-22 15:53 790次阅读

    汽车与大众汽车达成电子电气架构技术战略合作

    汽车与大众汽车集团共同宣布,继小汽车日期为2024年4月17日有关小
    的头像 发表于 07-22 09:49 911次阅读

    英飞凌携手ETAS提升新一代AURIX微控制器的安全性

    随着汽车行业迈向软件定义汽车及新型E/E架构,市场对高性能硬件与先进网络安全方案的需求日益凸显。为响应这趋势,全球半导体巨头英飞凌科技股份公司与
    的头像 发表于 05-15 10:04 362次阅读

    联合开发E/E架构,小大众第三次合作

    平台上集成小新一代基于中央计算和域控制器的电子电气架构。大众计划2026年将新的架构应用到中国生产的大众品牌电动汽车上。   作为有百年
    的头像 发表于 04-28 07:38 4474次阅读
    联合开发E/E<b class='flag-5'>架构</b>,小<b class='flag-5'>鹏</b>大众第三次合作

    汽车与大众汽车宣布签署E/E架构技术合作框架协议

    是其垂直集成的全栈软硬件技术的核心。它支持ADAS和Connectivity OS等软件与底层硬件和车辆平台解耦,实现跨平台软件的快速迭代。小汽车新一代E/E架构采用基于中央计算和
    的头像 发表于 04-23 14:49 478次阅读
    小<b class='flag-5'>鹏</b><b class='flag-5'>汽车</b>与大众<b class='flag-5'>汽车</b>宣布签署E/E<b class='flag-5'>架构</b>技术合作框架协议

    大众与小签署电子电气架构技术战略合作框架协议

    汽车与大众汽车集团共同宣布签署了电子电气架构技术战略合作框架协议,为大众汽车在中国市场的电动车平台开发领先的电子电气
    发表于 04-22 10:45 392次阅读
    大众与小<b class='flag-5'>鹏</b>签署电子电气<b class='flag-5'>架构</b>技术战略合作框架协议

    汽车与大众汽车集团签订电子电气架构技术战略合作框架协议

    中国领先的智能电动汽车公司小汽车与全球领先的汽车制造商大众汽车集团共同宣布,小
    的头像 发表于 04-17 18:08 1358次阅读

    汽车的AeroHT展现了其eVTOL技术,将其X2飞行汽车带到了广州上空

    随着许多eVTOL开发人员正在为他们的首次飞行做准备,AeroHT继续展示为什么它是该领域的领导者之。今天早些时候,小汽车的空中部门在中国广州市上空进行了首次成功的全电动X2“飞行汽车
    发表于 03-18 08:44

    NVIDIA将在今年第二季度发布Blackwell架构新一代GPU加速器“B100”

    根据各方信息和路线图,NVIDIA预计会在今年第二季度发布Blackwell架构新一代GPU加速器“B100”。
    的头像 发表于 03-04 09:33 1248次阅读
    NVIDIA将在今年第二季度发布Blackwell<b class='flag-5'>架构</b>的<b class='flag-5'>新一代</b>GPU加速器“B100”

    国芯科技:新一代汽车电子MCU产品“CCFC3007PT” 内部测试成功

    研发的汽车电子MCU新产品CCFC3007PT是基于公司自主PowerPC架构C*CoreCPU内核研发的新一代适用于汽车电子动力总成、底盘控制器、动力电池控制器以
    的头像 发表于 01-20 08:26 1055次阅读
    国芯科技:<b class='flag-5'>新一代</b><b class='flag-5'>汽车</b>电子MCU产品“CCFC3007PT” 内部测试成功

    国产六核CPU,三屏异显,赋能新一代商显

    处理器共同推出米尔MYC-YD9360核心板及开发板,赋能新一代车载智能、电力智能、工业控制、新能源、机器智能等行业发展,满足多屏的显示需求。
    发表于 12-22 18:07

    国芯科技:新一代汽车电子MCU产品“CCFC3007PT” 内部测试成功

    自主PowerPC架构C*Core CPU内核研发的新一代适用于汽车电子动力总成、底盘控制器、动力电池控制器以及高集成度域控制器等应用的多核MCU芯片,是基于客户更高算力、更高信息安全
    发表于 12-20 16:56