0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CLLC拓扑在双向OBC应用中的设计挑战

jf_pJlTbmA9 来源:jf_pJlTbmA9 作者:jf_pJlTbmA9 2023-07-12 11:06 次阅读

随着双碳目标的推进,电动汽车车载充电器(以下简称“OBC”),正朝双向能量传输的方向发展,其既能从电网获取电能,又可将电能反馈至电网。配置了双向OBC的电动汽车,可用剩余电量为耗尽电量的电动汽车充电,也可在户外充当220 V电源,还可被当作分布式储能站,帮助电网消峰填谷。本文将探讨CLLC拓扑在双向OBC应用中的设计挑战和安森美(onsemi)的6.6 kW CLLC参考设计如何解决这些挑战。

什么是CLLC拓扑

如图1所示,隔离DCDC是构成双向OBC的主要组成部分之一。在200 W以上隔离DCDC应用中,包括单向OBC,很多都会用到LLC拓扑,因为它具有能效高、EMI表现好、开发难度低等优势,但这种拓扑只能用于单向能量传输。

1664258252372552.jpg

图1:双向OBC框图

大部分的双向OBC中隔离DCDC级都会采用CLLC拓扑。CLLC拓扑(如图2所示)是将LLC拓扑中电池侧的桥式整流二极管换成有源桥,然后再在变压器的电池端串上一个C来确保磁平衡。给电池充电的时候,左侧的桥做主动开关,右侧的桥做同步整流;当电池向外做逆变的时候,右侧的桥做主动开关,左侧的桥做同步整流。CLLC继承了LLC拓扑的特点,采用脉冲频率调节来控制增益,具有同样的软开关特性,因此,能效高,EMI表现好,简单,但存在增益调整范围窄、难以满足宽广的电池电压变化范围的挑战。为此,安森美推出一个6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK,它采用宽母线电压范围来应对电池电压变化,峰值能效超过98%,帮助设计人员解决挑战,加快开发。

1664258247528195.png

图2:CLLC拓扑

1664258241156990.png

图3:6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK的峰值能效超过98%

6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK

安森美的6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK包括三个主要部分,如图4:中间那片大板是功率板,所有高压电流的线路都在这片板上。右上角是控制板,通过接插件和功率板相连,方便大家在不同的控制和功率方案之间做交叉测试。左侧是谐振腔组合,包含了一个集成了谐振电感的变压器和两个谐振电容板。谐振电容由多颗MLCC经串并联组成,以在满足耐压和电流的要求下实现更小体积。谐振腔也是可拆卸的,方便设计人员验证不同的变压器、电感和电容参数。方案中包含了散热器、风扇、辅助电源、保护电路等等。连接电源和负载就可以在满载下做长时间测试。

1664258234709054.png

图4:6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK

功率板中,位于母线侧和电池测的两个有源桥分别由四颗1200 V/40毫欧NVHL040N120SC1和四颗900 V/20毫欧NVHL020N090SC1碳化硅(SiC) MOS构成。SiC可比Si实现更高的功率密度、更高的开关频率和极高效的设计。驱动这八颗SiC MOS的是八颗磁隔离大电流驱动器。驱动信号由控制板通过控制接口送出。

控制接口的所有信号都位于电池侧,电平不超过12 V。电池端的电压、电流通过采样完通过分压、放大后直接送到控制接口。母线侧的电压采样由一颗独立的ADC来完成,数据通过SPI总线再经数字信号隔离器传到控制接口。

控制板中,我们选用了一颗车规级的LLC控制芯片NCV4390,来做脉冲频率调制 (以下简称“PFM”) 和同步整流控制;用低功耗MCU,来做充电的恒压值设定;用车规级轨到轨运放NCV33204来做恒流充电控制;再配上我们的车规级逻辑器件来做电网到电池和电池到电网方向的判断和转换。

电路细节的设计考量

如果想要节省成本,可以把1200 V和900 V SiC MOS换成900 V和650 V SiC MOS,但需要控制好开关尖峰,最好从降低PCB寄生电感着手,可以通过添加旁路电容实现。

高电压低Rdson的SiC MOSFET,它的Qg很大,为了在高开关频率下维持高效,必须用大电流的门极驱动器来驱动。另外,我们方案的控制接口位于电池侧,驱动母线侧的MOS必须要隔离,而且要符合安规。虽然驱动电池侧的MOS不需要安规,但是为了统一物料,我们还是选用相同的器件NCV57000,短路保护和故障报告功能是其亮点。

隔离门极驱动的另一个不错的选择是NCV51561同样带安规隔离,驱动电流更大,一推二,延时更短。虽然没有过流保护,但它的双高禁止功能也能保护到来自信号端的,由于干扰或误操作而造成的炸机风险。

选择高压辅助电源的最佳拓扑

该6.6 kW CLLC参考设计的辅助电源采用了“反激 + Buck-boost”的拓扑以应对高达750 V的母线电压,如表1,相较其他3种拓扑,这种反激+Buck-boost拓扑在成本、能效、输入电压下限、可靠性、母线电容分压平衡方面都更胜一筹。

1664258226424470.png

表1:800 V 输入电压下可选的高压辅助电源拓扑

选择为高边门极驱动供电的最佳方案

辅助电源设计当中的另外一个挑战,是多组且隔离的电源轨。该6.6 kW CLLC参考设计总共需要7组电源轨。

SiC驱动需要负压,且SiC MOS的Vcc容差范围较窄,所以不宜采用自举,否则会带来稳压、时序、功耗、噪声等诸多问题。而如果采用隔离DCDC,会存在PCB占位、成本和噪声干扰等问题。第3种方法是通过变压器绕组来输出所有电压,这是这几种方法里成本最低的一种,但缺点是工艺不好控制,易出错,噪声干扰大。我们的6.6 kW CLLC参考设计采用的脉冲变压器扩展绕组解决了上述3种方法的所有问题,更重要的是它大大缩短了动点引线的长度。

双沿跟踪自适应同步整流控制

前面提到,在控制板中采用LLC控制器NCV4390来做PFM环路和同步整流控制。NCV4390采用电流模式,环路响应快,不易震荡,自带双沿跟踪同步整流控制功能,在PFM模式和间歇工作模式之间插入了一段PWM工作模式,目的是改善轻载下的能效和电压纹波,而且NCV4390的保护功能也非常强大。值得强调的是,这种双沿跟踪同步整流控制方法已获市场验证是非常靠谱的。

总结

电动汽车OBC正朝向双向能量传输的方向发展,以配合双碳目标的推进。隔离DCDC是构成双向OBC的主要组成部分之一。大部分的双向OBC中隔离DCDC级都会采用CLLC拓扑。安森美的6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK,基于SiC MOS,峰值能效超过98%,还解决了CLLC拓扑在双向OBC应用中的PCB占位、噪声干扰、可靠性和成本等诸多设计挑战,它采用硬件控制器来做PFM控制,帮助设计人员加快开发。更多资料,包括物料单(BOM)、线路图、Gerber文件和测试报告,请到这里获取。
责任编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12015

    浏览量

    230895
  • OBC
    OBC
    +关注

    关注

    10

    文章

    157

    浏览量

    17806
收藏 人收藏

    评论

    相关推荐

    用于OBC的DC-DC级的LLC谐振转换器拓扑

    本文介绍了文献描述的流行的 LLC 和 LLC 派生双向转换器拓扑。 为车载充电器 (OBC) 选择 DC-DC 转换器方案基于效率、性能和功率密度目标,因此首选谐振转换器。本文介绍
    的头像 发表于 10-11 14:46 1.4w次阅读
    用于<b class='flag-5'>OBC</b>的DC-DC级的LLC谐振转换器<b class='flag-5'>拓扑</b>

    新能源电动汽车双向车载充电机OBC拓扑结构设计

    为了满足当下车辆给家庭供电、车辆为户外旅行用电设备供电、车辆到电网、车辆对车辆进行充电等新应用场景,车载充电机(On-Board Charger;OBC)正在从单向拓扑双向拓扑转变,
    的头像 发表于 11-06 09:29 2120次阅读
    新能源电动汽车<b class='flag-5'>双向</b>车载充电机<b class='flag-5'>OBC</b><b class='flag-5'>拓扑</b>结构设计

    双向车载充电器的6.6kW CLLC参考设计

    ,也可在户外充当220 V电源,还可被当作分布式储能站,帮助电网消峰填谷。本文将探讨CLLC拓扑在双向OBC应用的设计
    的头像 发表于 10-16 14:04 3001次阅读
    <b class='flag-5'>双向</b>车载充电器的6.6kW <b class='flag-5'>CLLC</b>参考设计

    设计基于SiC-MOSFET的6.6kW双向EV车载充电器

    均高于96.5%的原型,其中CCM图腾柱PFC转换器为67 kHz,CLLC谐振转换器为150-300 kHz。通过将功率半导体和功率磁器件集成在同一工具散热器上,由于650V SiC MOSFET的低功率损耗,因此在双向高功率转换应用(例如EV的
    发表于 10-25 10:02

    如何设计基于SiC-MOSFET的6.6kW双向电动汽车车载充电器?

    无法实现转换器的预期优势[2] - [3]。随后,DC-DC级选择了双向CLLC谐振转换器[3] - [4],因为它在充电和放电模式下均提供高效率和宽输出电压范围。最流行的单相PFC拓扑是传统的PFC
    发表于 02-27 09:44

    正弦振幅转换器拓扑在中转母线架构应用实现了一流的效率和功率密度

    正弦振幅转换器拓扑在中转母线架构应用实现了一流的效率和功率密度
    发表于 06-02 15:41 0次下载

    SRC、PRC、LLC拓扑在前端变换的应用

    SRC、PRC、LLC拓扑在前端变换的应用
    发表于 05-29 11:11 25次下载

    现代SiC逆变器:无需OBC实现高速双向充电

    此外,取消OBC后,通过控制内置双向充电器的集成充电控制单元 (ICCU) 和车辆充电管理系统,现代汽车E-GMP 的电池也可以兼作大容量外部移动电源。
    的头像 发表于 07-13 14:53 2226次阅读

    CLLC拓扑在双向OBC应用的设计挑战

    为此,安森美推出一个6.6 kW CLLC参考设计SEC-6K6W-CLLC-GEVK,它采用宽母线电压范围来应对电池电压变化,峰值能效超过98%,帮助设计人员解决挑战,加快开发。
    的头像 发表于 10-18 10:29 1w次阅读

    Delta OBC双向充电技术

    Delta OBC双向充电技术,最新的新能源车充电技术。
    发表于 10-24 15:08 11次下载

    CLLC拓扑在双向OBC的应用

    随着双碳目标的推进,电动汽车车载充电机(以下简称“OBC”)正朝双向能量传输的方向发展,它既能从电网获取电能,又可以将电能反馈至电网。
    的头像 发表于 11-06 12:23 1587次阅读
    <b class='flag-5'>CLLC</b><b class='flag-5'>拓扑在</b><b class='flag-5'>双向</b><b class='flag-5'>OBC</b><b class='flag-5'>中</b>的应用

    6.6kW OBCCLLC级参考设计套件SEC-6K6W-CLLC-GEVK数据手册

    电子发烧友网站提供《6.6kW OBCCLLC级参考设计套件SEC-6K6W-CLLC-GEVK数据手册.rar》资料免费下载
    发表于 04-23 17:33 8次下载
    6.6kW <b class='flag-5'>OBC</b>的<b class='flag-5'>CLLC</b>级参考设计套件SEC-6K6W-<b class='flag-5'>CLLC</b>-GEVK数据手册

    cllc谐振变换器的拓扑结构及控制原理

    CLLC谐振变换器作为一种高效的电力转换装置,在车载OBC系统、光电、通信以及新能源发电等领域得到了广泛应用。其独特的双向对称结构和灵活的控制策略,使得它能够实现电能的双向流动(即充电
    的头像 发表于 07-16 09:56 2871次阅读

    cllc谐振变换器的应用场景

    CLLC谐振变换器作为一种高效、灵活的电力转换装置,在现代电力电子系统扮演着重要角色。其独特的双向对称结构和优良的工作特性,使得它在多个领域得到了广泛应用。 一、车载OBC系统 车载
    的头像 发表于 07-16 09:59 788次阅读

    OBCCLLC/CLLLC拓扑与DAB拓扑比较

    OBC(on-board Charger) 作为汽车充电的重要部件 一般分为 PFC 和 DC-DC两个部分。PFC将输入交流电压整流成直流电压,再通过DC-DC对电池进行充电。
    的头像 发表于 10-16 14:11 2430次阅读