0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

片上变压器的应用:多峰值谐振腔

冬至子 来源:haikun01 作者:贾海昆 2023-07-11 11:42 次阅读

片上变压器最最主要的优势在于: 以与电感相当的面积消耗,提供一个更高阶的网络和更多的设计自由度。 这次我来给大家介绍一下片上变压器被用在了哪些地方,大家是怎么围绕着这多出来的自由度做文章的。

讲片上变压器应用的论文实在太多了,我把它们粗略的划分为如下几类进行逐一介绍。注意,下面不同类别之间的界限可能会很模糊。如果只看电路结构,可能都是类似的,甚至参数也是类似的,但它们背后最直观的设计理念,或者说设计的出发点是有区别的。

片上变压器应用的主要类别:

1) 多峰值谐振腔(multi-peak resonators)

2) 增益增强 (gain boosting)

3) 宽带匹配 (wideband matching network)

4) 传输线的集中等效 (transmission line lumped element equivalent)

5) 磁调谐 (magnetically tuning)

6) 其他 (Others)

今天介绍第一个类别,多峰值谐振腔。

说起谐振腔,最先想到的就是简单的LC电路。从频域来看,LC谐振腔有一个峰值,峰值频率由L和C决定,峰值幅度由Q值决定,被广泛的用在振荡器射频放大器的匹配之中。而变压器作为一个高阶LC网络,其频域响应上可以有多个峰值。这一点很容易计算出来,先不考虑损耗,计算出变压器网络的阻抗函数,令分母等于0,即可计算出峰值位置。一个典型的变压器网络频率响应如下图所示。

图片

片上变压器网络及其典型频率响应曲线

现在我们已经知道了这个性质,那它可以用在什么地方呢?

1、双模VCO

最自然而然的是压控振荡器(VCO)。压控振荡器的工作频率由谐振腔的峰值频率决定。 如果谐振腔有两个峰值,那么压控振荡器就有两个可能的工作模式。我们可以通过选通不同的gm单元,来给不同的模式提供负阻,从而选择不同的工作模式,两个模式合在一起增大VCO的调频范围。 【E. Afshari, JSSC 2012】 这篇论文就是这么做的,电路结构见下图,其实挺简单直接的,最终实现了2.48到5.62GHz的调谐范围。这里有一点值得注意的是,需要合适的选择变压器的参数,让两个峰值频率不要隔的太远,以免可变电容不能覆盖这个频率范围。

图片

【E. Afshari, JSSC 2012】中的双模VCO电路

我也做过一个类似原理的双模VCO发表在A-SSCC和TMTT上,不过采用的是pi型匹配网络,工作频率在毫米波段,调谐范围从47.6到71.0GHz。现在想来其实还是做的复杂了,用一个变压器即可实现双模,并不一定需要额外两个电感消耗额外的面积。

图片

图片

基于PI-网络的双模VCO

2、谐波控制 -- Class-F VCO

刚才的双模VCO为了实现连续调谐,两个频率峰值不能太远。如果我们让这两个谐振峰呈倍数关系呢?首先,这一点不难做到,从上文的公式,我们可以通过控制耦合系数、电容分布来控制两个峰值频率的位置。 (插入一句,从这里也可以看出耦合系数不是越大越好,我们应该把它和电感值一样当作一个需要优化的参数。) 其次,真有人是这么做的。呈倍数关系的两个峰值频率实际上可以看作谐波控制,谐波控制这个概念在VCO和PA设计中应用很广,PA有那么多个Class,好多都是通过谐波控制来定义的。

【R. B. Staszewski,JSSC2013】 这篇论文里首次提出的Class-F VCO的概念就利用了变压器的这个特性。从Hajimiri的相位噪声概念出发,我们可以知道 波形越接近方波,从电压电流噪声向相位噪声的转换就越小。如果我们把一阶谐波的成分和三阶谐波的成分加起来,大致就可以得到接近方波的波形。 这篇论文里把变压器的两个峰值频率设计成三倍关系,把晶体管漏端的时域波形整理成伪方波,从而改善相噪性能。

图片

图片

Class-F VCO的概念【R. B. Staszewski,JSSC2013】

我后来也有沿着这个思路做一篇论文,把三阶谐波控制用在磁耦合QVCO里,发在2015的欧洲固态电路会议上。中间用了一个三线圈的变压器,同时实现三个功能:提供QVCO所需的90度相移、提供一个高阻帮助起振、支持三阶谐波。最后测出来相噪性能还不错。但设计期间我觉得Class-F的思路存在很难解决的问题,在Bogdan的论文里也没有解释的很清楚。一阶谐波和三阶谐波要叠加出来近似方波的波形,对它们的相对幅度和相位都有要求,那在VCO里怎么去控制一阶三阶谐波的幅度相位?两个电容阵列怎么独立进行调谐?当然测试的时候我可以扫描筛选出相噪好的电容值,但这样就不能说明是class-F带来的好处了。

Bogdan这篇论文对相噪的理论分析巨复杂,不太能指导设计,有点为了写论文强推公式的嫌疑。比较起来Class-B的相噪公式推导要优雅多了。

图片

Triple Coupled Class-F QVCO电路

3、谐波控制 -- Implicit Common Mode Resonant VCO

上一种思路是把第二个峰值频率放在三阶谐波处。那能不能放在二阶谐波处呢?答案是可以的,而且非常有用!Broadcom的David Murphy沿这个思路做的VCO发了两年的ISSCC,最后的总结写成了一篇期刊发在JSSC2017上。感兴趣的同学可以去看看这篇JSSC,写的非常好。

做VCO的人很早就意识到尾电流源会对相噪带来不好的影响,它在二阶谐波和dc处的噪声会被混频混到相噪之中。一个经典的处理方法是采用谐振在二阶谐波处的LC网络对尾电流源进行滤波 【E. Hegazi,JSSC2001】 。这种方法对相噪效果很好,但是额外消耗一个电感的面积。 直到,Murphy很聪明的认识到,尾电流源的二阶滤波不就是额外提供一个处于二阶谐波处的高阻么?而对于晶体管来说,它是不区分高阻节点在上面还是在下面的,那我们用一个变压器,不就可以同时实现一阶和二阶谐波处两个峰值吗?这样岂不是省下了面积?最后做出来果然是这样! 注意右图跟普通的不带尾电流源的VCO电路差不多,但我还是把它归类于基于变压器的设计,因为这里电感的耦合系数是经过了刻意设计的。

图片

从尾电流源滤波到Implicit CM Resonant的过渡

这个Implicit Common Mode Resonant的理论我非常喜欢,我尝试过仿真,对相噪的提高有立竿见影的效果。假如我还在学校,估计会沿着这个思路做个小电路混篇论文,在公司是没有这样的机会了。这个理论即简洁又鲁棒,而Class-F的理论即复杂又敏感,所以也难怪我喜欢这个理论了。

简洁和鲁棒,对一个工程理论你还能要求更多吗?

【L. Fapori, JSSC2013】 这篇论文里提出Class-D VCO的概念。论文里给出了一个仿真现象:输出节点的单端电容值,存在一个对相噪的最优值,如下图所示,但没怎么进行解释。实际上当单端电容合适的时候,恰好可以提供一个二阶谐波处的高阻值。Murphy在他的JSSC论文里用脚注加上一行小字:他们在仿真中发现了这个现象,但没有进行分析和测试验证,如果用我的理论,这个现象极容易得到解释……

要是换我,我也会很得意,有一种从理论上碾压的快感……

图片

Class-D VCO中观察到的相噪与单端电容的关系

4、谐波控制 -- 功率放大器

如果大家仔细观察,会发现 VCO和PA呈现出很有趣的对偶关系。 从能量的角度考虑,它们都是把直流能量转换为射频的能量,所以都对效率这个指标有要求;它们也都是大信号电路,都可以定义导通角。区别之处是,VCO自己产生射频频率信号,而PA是放大已有的射频频率信号。我们有Class AB的PA,也有Class AB的VCO;有Class C的PA,后来也有了Class C的VCO;有Class D的PA,后来也有了Class D的VCO;有Class F的PA,后来也有了Class F的VCO;有Class E/F2的PA,后来也有了Class E/F2的VCO……

我甚至开玩笑的说,有一个很好的研究思路是:看看有什么结构是PA用到了,VCO还没有用到的,你去填补这个空白,把这个术语占上,比如Stack VCO、Class-G VCO……(要是有人受这篇文章的启发去做了Stack VCO并发了好论文,可以在致谢里感谢一下我,哈哈。)

所以基于变压器的谐波控制在功率放大器里也用到的很多。我就不一一举例了,只举一篇 【W. Ye, ISSCC2015】

5、倍频和分频

在倍频器和分频器中,谐波也扮演关键角色。 虽然变压器本身是无源器件,不产生新的谐波分量,但通过设计它的峰值频率,可以放大晶体管的谐波成分,提高效率。从这个角度想,变压器在倍频器和分频器中也有应用空间。 但这么简单直接的方向,当然不可能是我第一个想到的了。下面给大家看几篇论文。

Bogdan组的 【Z. Zong,RFIC2015】 这篇论文的思路是利用变压器,在VCO谐振腔上引入处于三阶谐波处的峰值,放大VCO的三阶成分,然后直接通过调谐在三倍频处的PA放大三阶成分,压制基频成分。他们组发了这么多Class-F VCO的论文,这个核心结构与Class-F VCO类似,他们做起来应该驾轻就熟了。

图片

图片

片上变压器用于倍频和三阶谐波提取

港科大的Howard Luong组是使用变压器的高手,写过一本关于变压器的专著,汇总他们组这些年来的工作,有兴趣的同学可以去看看。我这一些列的文章应该会多次提到他们的成果。这次说 【L. Wu, TCAS-I 2013】 这篇除四的注入锁定分频器。注入锁定分频器本身振荡在基频附近,注入的四倍频信号和振荡器本身的三阶谐波混频混到基频,从而锁定频率。两个因素影响了给定功率下的锁定范围:混频效率和振荡器本身三阶谐波产生效率。我们在谐振腔里引入三阶谐波处的峰值,提高三阶谐波幅度,从而也就提高了锁定范围。这篇文章差不多就是这样做的。电路结构如下,不过他没有用变压器,而是用的L-C-L-C网络。理论上变压器也是可以做到的,而且不需要这么多电感。

图片

片上变压器用于除四分频器

6、小结

基于变压器多峰值谐振腔的应用论文就介绍到这里,可能会有很多遗漏的地方。 这种论文归类的方法实际是一种不错的思维训练,通过类比帮助我们抓住一篇论文的本质,通过形象化的理解帮助我们产生新的创新点。 不少创新都是从形象化的理解,再通过理论分析逐步完善的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 功率放大器
    +关注

    关注

    102

    文章

    3597

    浏览量

    132006
  • 晶体管
    +关注

    关注

    77

    文章

    9705

    浏览量

    138467
  • 压控振荡器
    +关注

    关注

    10

    文章

    133

    浏览量

    29327
  • 射频放大器
    +关注

    关注

    3

    文章

    321

    浏览量

    18959
  • 变压器
    +关注

    关注

    0

    文章

    1145

    浏览量

    4010
收藏 人收藏

    评论

    相关推荐

    OptiFDTD应用:纳米盘型谐振腔等离子体波导滤波

    进行了研究。 纳米盘谐振腔设计 模拟结果 输出记录的功率谱*归一化到光源。显示波长530 nm和820 nm的两个峰值**。 *Note:直接从OptiFDTD获得的功率谱上,可以演示滤波
    发表于 01-09 08:52

    圆柱谐振腔的原理及介绍

    圆柱谐振腔的原理及介绍与矩形的情况类似,我们以TEmn波为例,先研究z方向行波场——也即传输线情况。  [/hide]
    发表于 11-02 17:45

    传输型谐振腔理论

    传输型谐振腔理论谐振腔的概念重点是谐振波长?和品质因数Q.[hide][/hide]
    发表于 11-03 08:47

    基于异向传输线的亚波长谐振腔设计

    基于异向传输线的亚波长谐振腔设计:提出了一种新型的谐振腔,该谐振腔谐振条件与普通谐振腔不同,其两个端面的总相移不必是18。“的正整数倍。这
    发表于 10-26 16:50 20次下载

    谐振腔中渡越时间效应的线性理论

    以小信号条件下入射相位为φ0的单个电子在驻波电场中的运动为基础,研究了电子束在谐振腔 π 模驻波场中的渡越时间效应,导出了
    发表于 10-27 09:59 20次下载

    谐振腔光电探测的性能分析

    谐振腔光电探测的性
    发表于 01-06 17:27 30次下载

    LLC谐振腔半桥变压器设计问题

    LLC谐振腔半桥变压器设计问题
    发表于 09-07 16:12 43次下载
    LLC<b class='flag-5'>谐振腔</b>半桥<b class='flag-5'>变压器</b>设计问题

    LLC谐振腔的设计

    LLC谐振腔的设计
    发表于 09-07 16:16 57次下载
    LLC<b class='flag-5'>谐振腔</b>的设计

    基于MATLAB光学谐振腔的设计

    本文将 MATLAB 的数值计算和图形功能用于光学谐振腔的设计中。用它确定谐振腔的参数,并对谐振腔内光线进行基于 MATLAB 的计算机模拟,得到较好模拟效果。 光学谐振腔的设计 在设
    发表于 11-03 17:01 41次下载
    基于MATLAB光学<b class='flag-5'>谐振腔</b>的设计

    谐振腔的作用

    谐振腔,通信术语,微波技术中作谐振回路的金属空腔。谐振腔是磁控管和速调管等微波电子管的主要组成部分。有空心金属及同轴两种。前者有矩形、圆
    的头像 发表于 12-18 16:04 3w次阅读

    上变压器的应用:增益增强

    在射频电路里,尤其是放大器和振荡,我们一般都需要使用电感将电容谐振掉,在所需的工作频率出提供一个高的阻抗,用来提高此频率的增益。为了说明变压器可以提高增益,我们先从简单的RLC并联谐振腔
    的头像 发表于 07-11 11:45 1443次阅读
    <b class='flag-5'>片</b><b class='flag-5'>上变压器</b>的应用:增益增强

    什么是光学谐振腔?光学谐振腔的作用有哪些?

    光学谐振腔(optical resonant cavity)是光波在其中来回反射从而提供光能反馈的空腔。
    的头像 发表于 09-14 09:21 3425次阅读
    什么是光学<b class='flag-5'>谐振腔</b>?光学<b class='flag-5'>谐振腔</b>的作用有哪些?

    LLC谐振腔损耗怎么仿真?

    LLC谐振腔损耗怎么仿真? LLC谐振腔被广泛应用于电源和逆变器中,常用于高效、高频电源转换,如服务电源,交换机电源和笔记本电脑电源等。但是,LLC
    的头像 发表于 10-22 12:20 855次阅读

    什么是光学谐振腔

    一、光学谐振腔简介 光学谐振腔(optical resonant cavity)是光波在其中来回反射从而提供光能反馈的空腔。激光的必要组成部分,通常由两块与激活介质轴线垂直的平面或凹球面反射镜构成
    的头像 发表于 03-15 06:34 1072次阅读
    什么是光学<b class='flag-5'>谐振腔</b>?

    微波检测的谐振腔到底是什么

    微波检测的谐振腔是一种在微波工程和射频技术领域中广泛应用的设备。它主要用于测量和分析微波信号的特性,如频率、阻抗、功率等。谐振腔的设计和应用涉及到电磁学、微波工程、材料科学等多个学科领域。本文将详细
    的头像 发表于 05-28 14:40 3251次阅读