0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

对ZnMn2O4正极材料结构进行调控获得高性能水系锌基电池

清新电源 来源:电化学人 2023-07-17 10:26 次阅读

研究背景

基于锌插层化学的水系锌基电池(AZBBs)由于其高容量(820 mAh g-1)、低氧化还原电位(-0.76 V vs. SHE)、高储量和低成本而受到广泛关注。由于正极材料是制约电池性能的主要因素,因此人们一直在努力探索和设计高效的AZBB正极材料。这些阴极材料可大致分为锰基氧化物,钒基氧化物,普鲁士蓝类似物和有机化合物等。这其中,锰基氧化物具有较高的电压和理论容量。此外,它们价廉物美,价态丰富,因而引起了许多学者的关注。回顾锂离子电池正极材料的发展历史,二元金属氧化物向锂金属氧化物的转变有效地提高了电池的充放电性能,并且ZnMn2O4具有与LiMn2O4相似的尖晶石结构以及Zn2+与Li+之间相近的离子半径(0.06 vs 0.059 nm),可以预见ZnMn2O4能作为AZBBs的潜在正极材料。但是ZnMn2O4存在锰基材料常见的锰溶解问题,以及过渡金属氧化物固有的差的电导率的问题,那么这些问题推动了这一领域的不断研究。

文章简介

基于此,本文首次采用Fe掺杂和低价K掺杂的方法改变了ZnMn2O4的晶体结构,制备了双掺杂ZnMn2O4(本文称为K,Fe-ZMO)作为锌基电池正极材料。在空心核壳结构的K,Fe-ZMO中,K占据部分Zn位,Fe占据部分Mn位。X射线衍射(XRD)和X射线光电子能谱(XPS)证明掺杂获得了成功。XPS和光致发光(PL)光谱证实了通过掺杂钾和铁所得到的氧缺陷,并且在高分辨率透射电子显微镜(HRTEM)中也可以直接观察到氧缺陷的存在。电化学性能的大幅度提高得益于双掺杂改善了材料的导电性、离子扩散性和结构稳定性。此外,通过理论计算进一步证明了掺杂和氧缺陷可以诱导电子重排,改善电导率和离子扩散。其相关成果发表在国际知名期刊ChemicalEngineering Journal上,题为“Structural Regulation of ZnMn2O4 cathode material by K,Fe-Double doping to improve its rate and cycling stability for rechargeable aqueous zinc-based batteries”。

特色要点

要点一:通过精修后的XRD图可以证实K,Fe双离子的成功掺杂,这其中K占据部分Zn位,Fe占据部分Mn位,进一步扩大了ZnMn2O4晶体的晶面层间距,有利于Zn2+的快速脱插层。此外,由于K,Fe离子的双掺杂导致锰酸锌产生了一定程度的晶格畸变,导致氧空位的生成,促进了电子排列再分布,增强了正极材料的导电性能

c2c456d8-2363-11ee-962d-dac502259ad0.jpg

图1. (a)Rietveld精修的K,Fe-ZMO的XRD图谱。(b)K,Fe-ZMO晶体结构示意图。K,Fe-ZMO的(c,d)SEM和(e)TEM图像和元素映射图。(f)(e)中选定范围的放大图。(g,h)对应于(f)中两个区域的高分辨率TEM图像

c2e7d9d2-2363-11ee-962d-dac502259ad0.jpg

图2. (a)K,Fe-ZMO的Fe 2p和(b)K 2p高分辨XPS光谱。K,Fe-ZMO和ZMO的(c)Mn 2p和(d)O 1s XPS光谱比较。(e)K,Fe-ZMO和ZMO的拉曼光谱。(f)K,Fe-ZMO和ZMO的荧光光谱。(g)K,Fe-ZMO的高分辨透射电镜图像(插图为晶体结构)

要点二:作者分别制备了单一K掺杂和Fe掺杂的ZMO材料,发现K掺杂占据部分Zn位,是导致双掺杂时正极倍率性提升的主要因素,而Fe掺杂占据部分Mn位,稳定了材料的整体结构,是导致循环稳定性提升的主要因素

c2f98b00-2363-11ee-962d-dac502259ad0.jpg

图3. (a)K,Fe-ZMO和ZMO在0.1 mV s-1扫描速度下的CV曲线的第2圈(插图为不同扫描速率下的过电位)。(b)在0.1 A g-1下第20个循环的恒流充放电曲线。K,Fe-ZMO和ZMO在(c)0.1 A g-1,(d)0.5 A g-1下循环性能的比较。(e)根据不同电流密度下的放电曲线计算的特定容量。(f)K,Fe-ZMO在不同电流密度下的充放电曲线。(g)K、Fe-ZMO和ZMO的长循环性能

c32ebf82-2363-11ee-962d-dac502259ad0.jpg

图4. (a)在100 mA g-1下第50次充放电时K,Fe-ZMO和ZMO的Nyquist图(插图为模拟电路图)。(b)K、Fe-ZMO和ZMO体相的TDOS。(c)K,Fe-ZMO在不同扫描速率(0.1,0.2,0.3,0.4,0.5 mV s-1)下的CV曲线,(d)来源于K,Fe-ZMO的CV曲线中的氧化还原峰的峰值电流(IP)与扫描速率(v1/2)曲线的平方根的线性拟合结果。(e)K,Fe-ZMO和ZMO的电子密度差异图

要点三:当完全放电(0.8 V)时,Mn4+峰值强度变弱,Mn3+峰值强度明显强于完全充电(1.8 V) ,表明容量来源于锰离子的价态变化,令人惊讶的是,完全充电和完全放电的 O 1s的特征XPS峰表现出明显的氧缺陷,这可能是K,Fe-ZMO具有优异电化学性能的原因之一。此外,ZnSO4[ Zn (OH)2]3·5H2O 和 Mn-O-H 信号也可以在完全放电状态下观察到,这可能是由Zn2+和H+共嵌入引起的

c3760a5e-2363-11ee-962d-dac502259ad0.jpg

图4. (a)电压-容量曲线。(b)K,Fe-ZMO在不同充放电状态下的非原位XRD图谱和(c)非原位XRD放大图谱。(d)电感耦合等离子体发射光谱法测定不同循环后2 M硫酸锌电解质中锰的溶出浓度。(e)计算K、Fe-ZMO和ZMO的生成能(以eV表示)

总结

综上所述,铁、钾双掺杂ZnMn2O4作为ZBB阴极材料可以实现高比容量和优异的循环稳定性。通过掺杂铁和钾改善了反应动力学和电化学性能,获得了氧缺陷。此外,这种改性促进了电子排列的再分布,增强了电子的输运和Zn2+的扩散。同时,K,Fe-ZMO的低生成能表明这种结构更加稳定。测试结果表明,在1.5 A g-1条件下,Zn/K、Fe-ZMO电池的容量可达104.3 mAh g-1。此外,在0.1 A g-1的低电流密度下,在50个循环中可以获得221.2 mAh g-1的容量,并且在1.0 A g-1下500个循环后具有88.1%的容量保持率,显示出优异的电化学性能,因此在ZBBs领域拥有巨大的潜力。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3207

    浏览量

    77506
  • 锌电池
    +关注

    关注

    0

    文章

    36

    浏览量

    7790
  • XPS
    XPS
    +关注

    关注

    0

    文章

    97

    浏览量

    11963
  • XRD
    XRD
    +关注

    关注

    0

    文章

    131

    浏览量

    9052

原文标题:协同作用!通过K,Fe双掺杂对ZnMn2O4正极材料结构进行调控获得高性能水系锌基电池

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    高负载质量下MnO2正极材料容量衰减问题的解决方案

    水系离子电池(AZIBs)因其高理论容量、高安全性和低成本等优势被广泛关注。锰氧化物因其较高的工作电压、高理论容量和低成本、制备简单等优点,是最有希望在水系
    的头像 发表于 10-24 16:30 302次阅读
    高负载质量下MnO<b class='flag-5'>2</b><b class='flag-5'>正极</b><b class='flag-5'>材料</b>容量衰减问题的解决方案

    电池工作温度_电池结构

    电池的工作温度范围相对较广,但其性能受工作环境温度的影响较大。以下是对电池工作温度的详细分析:
    的头像 发表于 10-03 14:55 236次阅读

    松下能源获得CAMX Power最新GEMX®平台的锂离子电池正极活性材料使用许可

    获得CAMX最新GEMX®平台的锂离子电池正极活性材料使用许可。 CAMX在其核心发明的基础上建立了GEMX®平台,现已在全球包括美国、欧盟、韩国、日本和中国在内的国家和地区
    的头像 发表于 08-22 13:06 207次阅读

    质子调控醌烯醇转化助力高性能水系电池

    羰基氧化还原化学中C=O与C-O-之间的非均相烯醇化反应是广泛存在于自然界的重要生理过程。该研究揭示了基于有机羰基的水系有机电极材料的广泛应用,其中通过调整羰基的
    的头像 发表于 05-23 09:24 335次阅读
    质子<b class='flag-5'>调控</b>醌烯醇转化助力<b class='flag-5'>高性能</b><b class='flag-5'>水系</b><b class='flag-5'>锌</b><b class='flag-5'>电池</b>

    电池正极材料的分类 电池正极材料的特性

    电池正极材料是决定电池性能的关键因素之一,它们影响着电池的能量密度、循环寿命、安全性以及成本等
    的头像 发表于 05-19 14:49 1374次阅读

    磷酸铁锂是正极材料

    磷酸铁锂是一种非常重要的锂电池正极材料。它具有独特的橄榄石型结构,由铁、磷和氧组成,其中锂离子在充放电过程中嵌入和脱出。
    的头像 发表于 05-19 14:45 860次阅读

    什么是正极材料正极材料的四大类型?

    正极材料是锂离子电池中的一个重要组成部分,它位于电池正极一侧,负责在充放电过程中储存和释放锂离子。
    的头像 发表于 05-19 14:42 2797次阅读

    电池正极材料有哪些种类

    电池正极材料是决定电池性能的关键因素之一,它们影响着电池的能量密度、循环寿命、安全性以及成本
    的头像 发表于 05-19 14:36 1644次阅读

    华为公布一项名为“钠电池复合正极材料及其应用”的发明专利

    近日,华为于42日公布一项名为“钠电池复合正极材料及其应用”的发明专利,该专利技术可实现复合正极
    的头像 发表于 04-07 10:54 1025次阅读

    非质子型弱配位电解液实现无腐蚀超薄金属电池

    金属电池以高容量、低成本、环保等特点受到广泛关注。但由于金属在传统水系电解液中热力学不稳定,金属
    的头像 发表于 04-02 09:05 443次阅读
    非质子型弱配位电解液实现无腐蚀超薄<b class='flag-5'>锌</b>金属<b class='flag-5'>电池</b>

    富铁无序岩盐锂离子正极材料的氧化还原研究

    随着对高性能和高性价比锂离子电池的需求不断增长,对由丰富元素(如Fe)组成的正极材料的需求日益迫切。
    的头像 发表于 03-27 09:06 412次阅读
    富铁无序岩盐锂离子<b class='flag-5'>正极</b><b class='flag-5'>材料</b>的氧化还原研究

    开发一种生物兼容性水系Zn-MnO2电池正极—生物质碳集成策略

    环保、安全性高的水性离子电池(AZIBs)在大规模储能领域具有巨大潜力。用MnO2作AZIBs的正极材料时,在充放电过程中存在
    的头像 发表于 02-27 09:19 591次阅读
    开发一种生物兼容性<b class='flag-5'>水系</b>Zn-MnO<b class='flag-5'>2</b><b class='flag-5'>电池</b><b class='flag-5'>正极</b>—生物质碳集成策略

    一种用于调控Ga2O3薄膜的表面电子结构的的热重组工程

    性能是Ga2O3研究的热门话题之一。由于表面是器件中载流子传输和信号捕捉的主要部分,对表面的调控会在很大程度上改变器件的性能。然而,表面作为一个非常薄的有源层,难以实现对其有源通道特性
    的头像 发表于 01-19 15:35 812次阅读
    一种用于<b class='flag-5'>调控</b>Ga<b class='flag-5'>2O</b>3薄膜的表面电子<b class='flag-5'>结构</b>的的热重组工程

    铅酸蓄电池正极反应式为什么可以吸引硫酸根离子

    铅酸蓄电池正极反应式为2PbO2 + Pb + 4H+ + 2e- ⇌ 2PbSO4 +
    的头像 发表于 01-17 10:06 1933次阅读

    调节用于高性能水系离子电池的多金属离子溶剂化结构

    由于在镀锌/剥过程中不可避免地在负极表面形成枝晶,大多数水系离子电池(AZIBs)会出现严重的容量衰退和
    的头像 发表于 12-04 09:52 1488次阅读
    调节用于<b class='flag-5'>高性能</b><b class='flag-5'>水系</b><b class='flag-5'>锌</b>离子<b class='flag-5'>电池</b>的多金属离子溶剂化<b class='flag-5'>结构</b>