0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

10个Python自动探索性数据分析神库!

数据分析与开发 来源:数据STUDIO 2023-07-17 14:15 次阅读

探索性数据分析是数据科学模型开发和数据集研究的重要组成部分之一。在拿到一个新数据集时首先就需要花费大量时间进行EDA来研究数据集中内在的信息。自动化的EDA Python包可以用几行Python代码执行EDA。

在本文中整理了10个可以自动执行EDA并生成有关数据的见解的Python包,看看他们都有什么功能,能在多大程度上帮我们自动化解决EDA的需求。

DTale

Pandas-profiling

sweetviz

autoviz

dataprep

KLib

dabl

speedML

datatile

edaviz

1、D-Tale

D-Tale使用Flask作为后端、React前端并且可以与ipython notebook和终端无缝集成。D-Tale可以支持Pandas的DataFrame, Series, MultiIndex, DatetimeIndex和RangeIndex。

importdtale importpandasaspd dtale.show(pd.read_csv("titanic.csv"))

9bad6ac8-2456-11ee-962d-dac502259ad0.gif

D-Tale库用一行代码就可以生成一个报告,其中包含数据集、相关性、图表和热图的总体总结,并突出显示缺失的值等。D-Tale还可以为报告中的每个图表进行分析,上面截图中我们可以看到图表是可以进行交互操作的。 2、Pandas-Profiling Pandas-Profiling可以生成Pandas DataFrame的概要报告。panda-profiling扩展了pandas DataFrame df.profile_report(),并且在大型数据集上工作得非常好,它可以在几秒钟内创建报告。#Installthebelowlibariesbeforeimporting importpandasaspd frompandas_profilingimportProfileReport #EDAusingpandas-profiling profile=ProfileReport(pd.read_csv('titanic.csv'),explorative=True) #SavingresultstoaHTMLfile profile.to_file("output.html")

9c8f878c-2456-11ee-962d-dac502259ad0.gif

3、Sweetviz Sweetviz是一个开源的Python库,只需要两行Python代码就可以生成漂亮的可视化图,将EDA(探索性数据分析)作为一个HTML应用程序启动。Sweetviz包是围绕快速可视化目标值和比较数据集构建的。

importpandasaspd importsweetvizassv #EDAusingAutoviz sweet_report=sv.analyze(pd.read_csv("titanic.csv")) #SavingresultstoHTMLfile sweet_report.show_html('sweet_report.html') Sweetviz库生成的报告包含数据集、相关性、分类和数字特征关联等的总体总结。

9d33241e-2456-11ee-962d-dac502259ad0.gif

4、AutoViz

9d6e3d10-2456-11ee-962d-dac502259ad0.png

Autoviz包可以用一行代码自动可视化任何大小的数据集,并自动生成HTML、bokeh等报告。用户可以与AutoViz包生成的HTML报告进行交互。importpandasaspd fromautoviz.AutoViz_ClassimportAutoViz_Class #EDAusingAutoviz autoviz=AutoViz_Class().AutoViz('train.csv')

9da241e6-2456-11ee-962d-dac502259ad0.gif

5、Dataprep Dataprep是一个用于分析、准备和处理数据的开源Python包。DataPrep构建在Pandas和Dask DataFrame之上,可以很容易地与其他Python库集成。 DataPrep的运行速度这10个包中最快的,他在几秒钟内就可以为Pandas/Dask DataFrame生成报告。

fromdataprep.datasetsimportload_dataset fromdataprep.edaimportcreate_report df=load_dataset("titanic.csv") create_report(df).show_browser()

9e1a7b3e-2456-11ee-962d-dac502259ad0.png

6、Klib

9e6cf3be-2456-11ee-962d-dac502259ad0.png

klib是一个用于导入、清理、分析和预处理数据的Python库。importklib importpandasaspd df=pd.read_csv('DATASET.csv') klib.missingval_plot(df)

9ea313cc-2456-11ee-962d-dac502259ad0.png

klib.corr_plot(df_cleaned,annot=False)

9f329bdc-2456-11ee-962d-dac502259ad0.png

klib.dist_plot(df_cleaned['Win_Prob'])

9f591ece-2456-11ee-962d-dac502259ad0.png

klib.cat_plot(df,figsize=(50,15))

9f77b85c-2456-11ee-962d-dac502259ad0.png

klibe虽然提供了很多的分析函数,但是对于每一个分析需要我们手动的编写代码,所以只能说是半自动化的操作,但是如果我们需要更定制化的分析,他是非常方便的。

9fa06b1c-2456-11ee-962d-dac502259ad0.gif

7、Dabl

Dabl不太关注单个列的统计度量,而是更多地关注通过可视化提供快速概述,以及方便的机器学习预处理和模型搜索。

9ffe3a30-2456-11ee-962d-dac502259ad0.png

dabl中的Plot()函数可以通过绘制各种图来实现可视化,包括:

目标分布图

散点图

线性判别分析

importpandasaspd importdabl df=pd.read_csv("titanic.csv") dabl.plot(df,target_col="Survived")

a0142ea8-2456-11ee-962d-dac502259ad0.gif

8、Speedml

SpeedML是用于快速启动机器学习管道的Python包。SpeedML整合了一些常用的ML包,包括 Pandas,Numpy,Sklearn,Xgboost 和 Matplotlib,所以说其实SpeedML不仅仅包含自动化EDA的功能。 SpeedML官方说,使用它可以基于迭代进行开发,将编码时间缩短了70%。

fromspeedmlimportSpeedml sml=Speedml('../input/train.csv','../input/test.csv', target='Survived',uid='PassengerId') sml.train.head()

a063463c-2456-11ee-962d-dac502259ad0.png

sml.plot.correlate()

a0766a0a-2456-11ee-962d-dac502259ad0.png

sml.plot.distribute()

a0a9bbf8-2456-11ee-962d-dac502259ad0.png

sml.plot.ordinal('Parch')

a0ddd7ee-2456-11ee-962d-dac502259ad0.png

sml.plot.ordinal('SibSp')

a109f8a6-2456-11ee-962d-dac502259ad0.png

sml.plot.continuous('Age')

a12f863e-2456-11ee-962d-dac502259ad0.png

9、DataTile

DataTile(以前称为Pandas-Summary)是一个开源的Python软件包,负责管理,汇总和可视化数据。DataTile基本上是PANDAS DataFrame describe()函数的扩展。

importpandasaspd fromdatatile.summary.dfimportDataFrameSummary df=pd.read_csv('titanic.csv') dfs=DataFrameSummary(df) dfs.summary()

a15d64a0-2456-11ee-962d-dac502259ad0.png

10、edaviz

edaviz是一个可以在Jupyter Notebook和Jupyter Lab中进行数据探索和可视化的python库,他本来是非常好用的,但是后来被砖厂(Databricks)收购并且整合到bamboolib 中,所以这里就简单的给个演示。

a184d846-2456-11ee-962d-dac502259ad0.gif

总结 在本文中,我们介绍了10个自动探索性数据分析Python软件包,这些软件包可以在几行Python代码中生成数据摘要并进行可视化。通过自动化的工作可以节省我们的很多时间。 Dataprep是我最常用的EDA包,AutoViz和D-table也是不错的选择,如果你需要定制化分析可以使用Klib,SpeedML整合的东西比较多,单独使用它啊进行EDA分析不是特别的适用,其他的包可以根据个人喜好选择,其实都还是很好用的,最后edaviz就不要考虑了,因为已经不开源了。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • eda
    eda
    +关注

    关注

    71

    文章

    2679

    浏览量

    172690
  • 数据分析
    +关注

    关注

    2

    文章

    1408

    浏览量

    33982
  • python
    +关注

    关注

    55

    文章

    4765

    浏览量

    84353

原文标题:10 个 Python 自动探索性数据分析神库!

文章出处:【微信号:DBDevs,微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    SLM片内监控IP数据分析显著减少测试成本

    SLM片内监控IP数据分析为高价值应用提供了更为自动化的数据分析手法。
    的头像 发表于 07-16 15:05 301次阅读
    SLM片内监控IP<b class='flag-5'>数据分析</b>显著减少测试成本

    网络爬虫,Python数据分析

    电子发烧友网站提供《网络爬虫,Python数据分析.pdf》资料免费下载
    发表于 07-13 09:27 1次下载

    数据分析除了spss还有什么

    数据分析是当今世界中一非常重要的领域,它涉及到从大量数据中提取有用信息、发现模式和趋势,并为决策提供支持。SPSS(Statistical Package for the Social
    的头像 发表于 07-05 15:01 493次阅读

    数据分析的工具有哪些

    数据分析是一涉及收集、处理、分析和解释数据以得出有意义见解的过程。在这个过程中,使用正确的工具至关重要。以下是一些主要的数据分析工具,以及
    的头像 发表于 07-05 14:54 713次阅读

    数据分析有哪些分析方法

    数据分析是一种重要的技能,它可以帮助我们从大量的数据中提取有价值的信息,从而做出更明智的决策。在这篇文章中,我们将介绍数据分析的各种方法,包括描述性分析、诊断性
    的头像 发表于 07-05 14:51 449次阅读

    深度学习常用的Python

    深度学习常用的Python,包括核心、可视化工具、深度学习框架、自然语言处理以及数据抓取
    的头像 发表于 07-03 16:04 505次阅读

    机器学习在数据分析中的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的
    的头像 发表于 07-02 11:22 503次阅读

    数据分析平台网站

    数据分析平台是一种用于处理和分析大规模数据集的系统,旨在从海量数据中提取有价值的信息和洞察。以下是大数据分析平台的主要功能和应用场景: 主
    的头像 发表于 06-28 15:46 524次阅读

    求助,关于AD采集到的数据分析问题

    问题描述:使用AD采集一10Hz到2MHz的脉冲,脉冲底部可能大于零,由采集到的数据分析出该脉冲的上升时间,幅值和占空比。 备注:在分析的时候已经知道脉冲的频率,精度为2X
    发表于 05-09 07:40

    如何使用Python进行图像识别的自动学习自动训练?

    如何使用Python进行图像识别的自动学习自动训练? 使用Python进行图像识别的自动学习和自动
    的头像 发表于 01-12 16:06 515次阅读

    Python编程的十大依赖有哪些

    Pandas数据科学家的得力工具,它提供了强大的数据结构和数据分析功能。无论您需要进行数据清洗、分析
    的头像 发表于 12-13 10:29 774次阅读

    Get职场新知识:做分析,用大数据分析工具

    为什么企业每天累积那么多的数据,也做数据分析,但最后决策还是靠经验?很大程度上是因为这些数据都被以不同的指标和存储方式放在各自的系统中,这就导致了数据
    发表于 12-05 09:36

    python第三方有哪些

    和物理模拟等领域中发挥着重要的作用。 Pandas Pandas 是一用于数据处理和分析Python 。它
    的头像 发表于 11-29 14:31 2064次阅读

    python中如何引入math

    Python中,要使用math,首先需要先引入它。mathPython的一标准,它提
    的头像 发表于 11-22 11:03 3952次阅读

    python去除list中重复的数据

    和使用集合等。 首先,让我们了解一下为什么需要去除列表中的重复数据。在实际编程中,经常会遇到需要对数据进行去重的情况。例如,我们可能从数据库或文件中获取了一组数据,但其中可能存在重复的
    的头像 发表于 11-21 15:49 1442次阅读