0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI大模型会颠覆手机吗?AI大模型会如何颠覆手机?

阿尔法工场研究院 来源:阿尔法工场研究院 2023-07-24 17:36 次阅读

导语:大模型在手机端的落地,不仅仅是AI进入人类生活的开始,也是行业发生颠覆,新老巨头进行更替的时刻。

将大模型变小,再塞进手机,会给人们的生活带来怎样的影响?

最近,荣耀成为了国内率先的破局者。

7月12日,荣耀了发布一款“革命性”的大模型手机Magic V2。成为全球首个实现大模型与手机系统融合的厂商

在荣耀的宣传中,更加个性化、更注重隐私,并且具备多模态功能的大模型,将会给用户带来全新的体验。

实际上,不只是荣耀,身为手机芯片龙头企业的高通,也在近期发布了自身的大模型。

在7月初召开的上海WAIC上,人们看到搭载高通第二代骁龙8芯片的安卓手机直接运行参数规模超过10亿的Stable Diffusion,且只需要15秒左右就可以出图。

更重要的是,这样的运行,是完全本地化的,只依赖手机本身的算力。

从GPT-3.5到GPT-4.0,曾经需要高昂算力,或者只能跑在云端的AI大模型,也开始在智能终端设备中落地。

不过,在兴奋之余,冷静的人总不免会问:我真的需要一个在部署在手机大模型么?还是说这只是手机厂商为挽救疲软的市场而制造的噱头?

打破APP的壁垒

在人们讨论“大模型手机”之前,一个不可忽略的事实是:当今的各类大模型AI,如chatGPT、新必应等,实际上早已推出了各自的手机版APP。

通过这一个个APP,在手机上运行大模型,早已不是什么难事,且与本地部署的方式相比,这些调用云端算力的APP,并不会对手机配置造成额外负担。

那既然如此,那人们为什么还要费尽心机地开发一个专用的“手机版”大模型呢?

对于这个问题,谷歌之前的做法似乎给出了一个可能的答案。

今年5月,在ChatGPT 3.5发布半年后,Google终于公布了全新一代大语言模型PaLM2,用以对抗ChatGPT。作为一种差异化竞争,PaLM2可以被部署在智能手机上。

当时,PaLM2包含四个大模型,按照参数规模从大到小,分别命名为:独角兽(Unicorn)、野牛(Bison)、水獭(Otter)和壁虎(Gecko)。

只有参数最小的“壁虎”可以在手机上运行,Google称,它的运行速度足够快,不联网也能正常工作。

但问题是:人们为什么要以牺牲参数、性能为代价,在手机上使用这样一个“缩水版”的小模型呢?

一个最重要的原因是:与那些以APP形态出现在手机上的大模型相比,一个融入手机系统中的大模型,可以打破各应用之间的壁垒,让其他App也自带大模型特性。

例如,融入手机中壁虎(Gecko),可以通过Gmail,实现自动写邮件的功能。

用户只需在Gmail的“Help me write”(帮我写)中输入需求,它就会结合此前邮件中的信息,写出完整的邮件。

通过这样与手机系统深入融合的大模型,人们不仅可以实现AI对各类APP的赋能,甚至还能将大模型作为通用接口,像“胶水”一样,将各类APP的能力实现组合,实现更多具有想象力的扩展。

例如,倘若人们在一个陌生的地点出行,想寻找某个罕见、偏僻,在地图上并不显眼的位置,这时,手机上的大模型,就可以调用语音+识图+导航的多模态功能,十分接地气地告诉你:“在前面的兰州拉面往左拐,看到城市便捷酒店后再右拐300米”,而不是简单地说出“直行”、“右拐”等机械的回答。

然而,要实现这样的组合,一个难以绕开的问题,就是算力。

同样的,开始在手机上部署大模型的高通,也意识到了这个问题。在高通日前发布的《混合AI是AI的未来》技术白皮书中,首次提出了混合AI架构的概念。

而这一概念,简而言之,就是让AI能够在云端和终端侧进行分布式处理,并根据不同的模型和需求灵活分配负载。

改造现实的肢体

也许有人认为,与在手机上部署大模型的做法相比,在云端进行计算的方法,才是既省力又划算的。

然而,实际上随着日活用户数量及其使用频率的增长,云端推理的成本会显著增加,而这样的高成本,也会让生成式AI的规模化扩展陷入瓶颈。

毕竟,单个AI超算的服务器带宽,以及消耗的电力,终归是有上限的,而用户的增长却并没有一个固定的上限。

这就是为什么混合AI架构,即在云端和终端侧进行分布式处理的AI,会成为AI的未来趋势,因为它能够利用终端侧的计算能力,降低云端推理的依赖和成本。

而在混合A架构的基础上,高通还提到,为实现生成式AI的规模化扩展,AI处理的重心正在向边缘转移。

也就是说,将来会有越来越多的AI数据,会在手机、摄像头、传感器等终端侧进行处理。

那这对大模型的发展来说意味着什么?

截至目前为止,大部分大模型所能处理的任务,仍旧停留在文字生成、绘制图片、编写代码这些工作上。

这样的任务,本质上都是属于出不了办公室的“案头工作”。

而AI如果要真正地走进社会,为更多的行业、群体带来改变,而不仅仅是一个存在于网页中的“秘书”,那它就必须具有改造现实世界的“肢体”。

而这样的“肢体”,正是一个个嵌入各个行业的边缘端设备。

举例来说,在医疗领域,AI可以通过智能摄像头,评估帕金森患者的状态;

工业行业,边缘化的AI可以提高生产过程的智能化和自动化,高效地完成零部件瑕疵检测等任务。

在农业领域,边缘化的AI可以通过智能传感器或无人机,实现对农作物的精准种植和管理,如实现农业病虫害识别、农作物品质评估等任务。

所有这一切,都是仅存在于网页中的大模型所无法完成的。

也正因如此,大模型“边缘化”所带来的显著后果,就是AI横向应用范围的极大扩展。

如何让GPT助力农业,已经成为人们思考的方向之一

而随着边缘化的到来,联邦计算等与之匹配的模型训练方式,也将打破原本数据中心化的格局。

因为到了那时,数据并不总是在某一个云端服务器完成计算,而是由多个参与方在本地训练机器学习模型,之后再将模型参数或梯度上传到中心服务器进行聚合

但诡异的是,依据科技行业发展的逻辑,这样一种去中心化的、可以实现跨行业或跨领域数据共享的技术,非但不会弱化原有的垄断行为,甚至还会进一步将其强化。

新巨头的崛起

在前网络时代,人们认为个人网站可以消解大传统媒体的信息垄断,但后来互联网霸主的规模,早已传统媒体的市值的天花板。

如果将这些科技巨头的市值,换算成国家的GDP,那么在2022年,微软的市值就超过了五常之一的俄罗斯(1.7万亿),全球能与之匹敌的经济体屈指可数。

究其原因,是因为任何“技术平权”的进行,在让科技变得更加低廉化、平民化的同时,都会反向地催生出一批技术壁垒更高,集中性更强的超级巨头。

因为正是有了这些“高壁垒”的技术进行支撑,巨头们的规模扩张才成为可能。

例如Meta正是通过一系列数据、算法的优势,才能对众多用户投其所好,并构筑了Facebook和Twitter等庞大的社交帝国。

英伟达也正是通过自身核心的GPU技术,和壁垒颇高的CUDA生态,才让今天的大模型得以完成海量的计算,才得以让AI成为人人触手可及的技术。

而同样的,当混合计算的AI,通过云端与终端侧相结合的方式,降低了大模型的推理的成本后,其造成的“技术平权”,至少会造就两个方向上的巨头。

其一,就是边缘化芯片的提供者。

因为芯片层的AI运算处理能力,是AI落地终端的必要条件。

虽然在边缘化时代,AI的算力场景是多样化的,例如工业、医疗、娱乐等,但其中最重要的“七寸”,仍然是在用户量最多的手机端。

谁若是能围绕手机端的大模型,形成一套从设计、生产、到软件生态一体化的完整体系,谁就将成为新一代的巨头。

在这方面,身为行业龙头的高通,早已开始了提前布局。

目前,搭载骁龙平台的已发布XR终端已经超过65款,其中Meta、PICO等头部厂商的旗舰产品均采用的是高通芯片。

第二个方向的巨头,就是能为行业提供全套解决方案的玩家。

毕竟AI在终端侧的落地,需要的不仅是硬件,还有软件端的优化。

在同样的硬件基础上,谁的AI引擎能比其他竞品具有更高的效能,能更快地完成计算,谁就将在软件栈方面更具优势。

而要想实现这点,就必须在大模型的量化、压缩、条件计算、神经网络架构搜索和编译方面进行突破,在不牺牲太多精度的前提下对AI模型进行缩减。

因此,谁能在大模型的压缩、小型化技术上取得突破,谁就能率先构建起自身基于终端的软件生态。

综上所述,大模型在手机端的落地,不仅仅是AI真正具备“肢体”,进入人类生活的开始,也是行业发生颠覆,新老巨头进行更替的时刻。

在这样的时代,变革的风暴远比我们想象的要猛烈。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    51035

    浏览量

    753077
  • 手机芯片
    +关注

    关注

    9

    文章

    367

    浏览量

    48911
  • 机器学习
    +关注

    关注

    66

    文章

    8406

    浏览量

    132563
  • AI芯片
    +关注

    关注

    17

    文章

    1879

    浏览量

    34991
  • ChatGPT
    +关注

    关注

    29

    文章

    1558

    浏览量

    7596
  • AI大模型
    +关注

    关注

    0

    文章

    315

    浏览量

    305

原文标题:AI大模型会如何颠覆手机?

文章出处:【微信号:alpworks,微信公众号:阿尔法工场研究院】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「大模型启示录」阅读体验】对大模型更深入的认知

    阅读《大模型启示录》这本书,我得说,它彻底颠覆了我对大模型的理解。作为一个经常用KIMI和豆包这类AI工具来完成作业、整理资料的大学生,我原以为大
    发表于 12-20 15:46

    名单公布!【书籍评测活动NO.49】大模型启示录:一本AI应用百科全书

    过程中,作者们还邀请了 数十位产业一线从业者参与共创 ,他们中的许多人曾是“共识粉碎机”主办的“AI 颠覆软件讨论”的嘉宾,来自全球顶尖科技公司、大模型创业公司、投资基金公司及大学的
    发表于 10-28 15:34

    博联AI模型全屋智能亮相2024中国建博

    2024中国建博(广州)在广交会展馆及保利世贸博览馆盛大启幕。 BroadLink博联智能携AI模型全屋智能以及AI商业照明解决方案惊喜亮相, 全方位展示
    的头像 发表于 09-12 15:46 418次阅读

    ai模型ai框架的关系是什么

    AI模型AI框架是人工智能领域中两个重要的概念,它们之间的关系密切且复杂。 AI模型的定义和特点
    的头像 发表于 07-16 10:07 4w次阅读

    STM CUBE AI错误导入onnx模型报错的原因?

    使用cube-AI分析模型时报错,该模型是pytorch的cnn转化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.
    发表于 05-27 07:15

    开发者手机 AI - 目标识别 demo

    Lite的API接口实现主要功能; Mindspore Lite为Openharmony AI推理框架,为上层应用提供统一的AI推理接口,可以完成在手机等端侧设备中的模型推理过程;
    发表于 04-11 16:14

    防止AI模型被黑客病毒入侵控制(原创)聆思大模型AI开发套件评测4

    个神奇的深度学习推理过程... # 练习一次预测功夫 predict(model_data) 防止 AI模型被黑客病毒入侵控制需要综合考虑多个方面的安全措施。由于具体的实现模型
    发表于 03-19 11:18

    cubemx ai导入onnx模型后压缩失败了怎么解决?

    cubemx ai导入onnx模型后压缩失败。请问我怎么解决
    发表于 03-19 07:58

    AI模型远程控制启动车辆(原创)

    AI模型
    还没吃饭
    发布于 :2024年03月18日 15:18:29

    使用cube-AI分析模型时报错的原因有哪些?

    使用cube-AI分析模型时报错,该模型是pytorch的cnn转化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.
    发表于 03-14 07:09

    新火种AI|手机模型开卷,但划时代的改变还没到来

    机器人、影像画面处理、通话实时翻译等多项AI功能,AI手机正式成为国内外手机厂商共同的“进化趋势”。 在此之前,1月8日和1月10日,国内手机
    的头像 发表于 02-18 14:36 419次阅读
    新火种<b class='flag-5'>AI</b>|<b class='flag-5'>手机</b>大<b class='flag-5'>模型</b>开卷,但划时代的改变还没到来

    AI模型可以取代大学教育吗?

    AI模型
    电子发烧友网官方
    发布于 :2024年01月02日 16:27:52

    AI模型怎么解决芯片过剩?

    AI模型
    电子发烧友网官方
    发布于 :2024年01月02日 15:42:05

    AI模型会不会取代电子工程师?

    AI模型
    电子发烧友网官方
    发布于 :2024年01月02日 15:11:43

    AI模型可以设计电路吗?

    AI模型
    电子发烧友网官方
    发布于 :2024年01月02日 15:09:29