0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

重新定义单光子探测技术:基于真空管的探测器解决方案

jf_64961214 来源:jf_64961214 作者:jf_64961214 2023-07-26 06:48 次阅读

Photonis 单光子探测解决方案基于真空管探测器技术。该技术结合了高检测效率 (QE) 和极低的暗计数(暗噪声)。发出脉冲后,检测器在检测到光子后生成脉冲的现象是最小的,并且停滞时间是非刺激性的。我们获得专利的高端微通道板技术提供高动态范围、无与伦比的收集效率 (CE) 和出色的时间特性。

wKgaomTAUTaAVFdZAACItkKvfdw139.jpg

真空管探测器工作原理

真空管光子探测器是一种利用真空管探测光子的探测器。它的工作原理是光电效应,即当材料吸收电磁辐射(例如光)时会发射电子

真空管光子探测器由真空管组成,真空管是一个包含真空的密封容器。真空内部有一个阴极、一个 MCP 和一个阳极,中间有一个小间隙。阴极是一个金属表面,当它被光子撞击时会发射电子。MCP将产生的光电子倍增,阳极也是收集发射电子的金属表面。

wKgZomTAUTaAE9vhAABKW_kS8c0845.jpg

当光子撞击光电阴极时,它们被金属表面吸收,导致电子发射。然后,这些发射的光电子通过施加的电压加速流向 MCP,从而产生与检测到的光子数量成正比的电流。管内的真空确保电子不会与任何气体分子碰撞,否则可能会干扰检测过程。

使用 MCP-PMT 进行单光子计数

MCP-PMT 常用于高端激光雷达应用以及医学成像、核物理和天文学等各个领域。在这些研究领域,计算单光子对于精确检测和测量至关重要。快速 MCP-PMT 可以检测非常低的光强度并产生高增益输出信号,使其成为检测单个光子的理想选择。

MCP-PMT 由窗口 + 光电阴极、一堆微通道板 (MCP) 和阳极组成。

在单光子计数应用中,MCP-PMT按以下方式工作:

wKgaomTAUTaAahOOAABVdDCEuhM836.jpg

光子进入 MCP-PMT 并与光电阴极相互作用,导致电子发射。

发射的电子在穿过微通道板 (MCP) 堆栈时会加速并倍增,这些微通道板本质上是具有许多微观通道的薄板。

然后,倍增的电子被阳极收集,产生可检测和分析的输出信号。

MCP-PMT 特别适合单光子计数应用,因为它们具有非常高的量子效率,这意味着它们可以将高比例的入射光子转换为电子信号。它们还具有快速响应时间,可以检测非常低的光强度并产生极低的暗计数。

使用图像增强管 (IIT) 进行单光子成像

在单光子成像应用中使用 IIT 可以极大地提高系统的灵敏度,从而实现单个光子的检测和成像。除了在生物成像、量子成像和天文学中的应用外,IIT 还用于各种其他应用,包括夜视、军事成像和工业检查。

wKgZomTAUTeAA_EPAAAqWKrFOAg245.jpg

使用IIT的单光子成像的基本原理如下:

光子通过输入窗口进入 IIT 并撞击光电阴极,光电阴极通常由铯或钾等材料制成。

光子使光电阴极发射电子,然后电子在电场的作用下加速流向微通道板 (MCP)。

穿过 MCP 的电子会引起二次电子级联,从而导致电子信号显着放大。

然后,放大的电子信号被加速流向荧光屏,当电子撞击荧光屏时,荧光屏会发出可见光。

敏感相机(例如 EMCCD 或 sCMOS 相机)用于捕获荧光屏发出的光并生成图像。

Cricket ™²包含图像增强管 (IIT),通常用于单光子成像应用,以放大单个光子的信号并产生可测量的输出信号。在单光子成像中,目标是检测和成像单光子,由于所涉及的光水平极低,这可能非常困难。IIT 可以通过提供光子信号的高增益放大来帮助克服这一挑战,从而可以检测和成像单光子。

使用 TPX3 芯片进行单光子成像和计数

Mantis 3将 TPX3CAM 与 Cricket™² 相结合,从而创建了单光子敏感、最先进的成像系统。Mantis 3专为高分辨率成像和光谱应用以及各种量子成像应用而开发,包括单光子探测、量子密钥分配、量子纠缠和量子隐形传态。

wKgZomTAUTeABpfyAABnpFcz2Lw820.jpg

Mantis 3中使用的Timepix3芯片是一种混合像素探测器,包含256 x 256像素,具有小于1纳秒的高时间分辨率和55微米的高空间分辨率,这使其非常适合量子成像应用。Mantis 3还具有高速读出功能,可以以高达每秒 1,000 帧的高帧速率运行。

wKgaomTAUTiALGW5AACDoxHEgfQ694.jpg

Mantis 3的主要特点之一是它能够同时执行能量和时间分辨成像。这是通过使用阈值时间 (ToT) 技术来实现的,该技术允许相机测量每个检测到的粒子或光子的能量及其到达时间。这使得 Mantis 3能够生成各种样品的高分辨率图像和光谱,包括生物组织、材料和亚原子粒子。

Mantis 3还具有高度可配置性,这使其非常适合用于各种成像应用。它可以配置为检测不同能量范围内的粒子或光子,还可以对其进行编程以检测与某些现象相关的粒子或光子的特定模式。

wKgZomTAUTiAQCUgAAB-H_NqBgQ117.jpg

总体而言,TPX3CAM 是一款功能强大的成像系统,专为量子应用而设计。其高时间和空间分辨率、高速读出、实时数据分析功能和可配置性使其成为各种量子成像应用的理想工具。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 探测器
    +关注

    关注

    14

    文章

    2653

    浏览量

    73207
  • 真空管
    +关注

    关注

    0

    文章

    42

    浏览量

    15204
  • 单光子
    +关注

    关注

    0

    文章

    19

    浏览量

    8105
收藏 人收藏

    评论

    相关推荐

    用于光波导系统的均匀性探测器

    配置的局部区域(称为光瞳)的照射强度。 每个光瞳由其大小(dx×dy)和形状定义,可以设置为椭圆形或矩形。 椭圆形光瞳: 矩形光瞳: **探测器功能:光瞳位置 ** 一旦设置了所考虑的光瞳的大小
    发表于 12-20 10:30

    如何提高金属探测器探测

    要提高金属探测器探测率,可以从以下几个方面入手: 一、选择合适的金属探测器 技术性能 :选择技术性能先进的金属
    的头像 发表于 11-29 11:14 511次阅读

    雷达探测器的工作原理 雷达探测器与激光探测器区别

    雷达探测器是一种利用雷达技术来检测和跟踪目标的设备。它的工作原理基于电磁波的发射和接收。以下是雷达探测器的基本工作原理: 发射电磁波 :雷达探测器会发射一定频率的电磁波,这些波以光速传
    的头像 发表于 11-24 09:43 822次阅读

    使用光子探测技术设计的数字混沌激光雷达系统

    混沌激光雷达具有分辨率高、抗干扰和隐蔽性强的优点,然而受限于混沌光源的功率、线性探测器的灵敏度以及硬件带宽,其在远距离探测方面存在瓶颈。另外,光子
    的头像 发表于 11-13 09:11 448次阅读
    使用<b class='flag-5'>单</b><b class='flag-5'>光子</b><b class='flag-5'>探测</b><b class='flag-5'>技术</b>设计的数字混沌激光雷达系统

    光电探测器选型噪声问题

    检测及其放大器的噪声特性决定。任何光学探测器系统中都有三个主要的噪声源:光子相关的散粒噪声、探测器暗噪声和放大器噪声。前两个与探测器有关。
    的头像 发表于 10-12 06:30 533次阅读
    光电<b class='flag-5'>探测器</b>选型噪声问题

    被动红外探测器与主动红外探测器的原理比较

    被动红外探测器(Passive Infrared Detector, PIR)和主动红外探测器(Active Infrared Detector, AID)是两种常见的安全监控设备,它们在防盗报警
    的头像 发表于 09-20 11:38 1228次阅读

    VirtualLab:通用探测器

    探测器窗口的中心位置和大小可以根据坐标系和每一个单独模式的扩展或探测器的位置来定义。 用户还可以配置采样是单独处理(每个模式)还是在相互网格上处理。该网格可以由周期(采样距离)或网格点(采样点数量)指定
    发表于 08-06 15:20

    金属探测器电路图 带Arduino的金属探测器设计

    。本文将深入探讨金属探测器定义、工作原理、应用领域以及未来发展趋势,旨在全面展现这一科技设备的价值与潜力。
    的头像 发表于 07-04 17:53 2606次阅读
    金属<b class='flag-5'>探测器</b>电路图 带Arduino的金属<b class='flag-5'>探测器</b>设计

    基于超导纳米线光子探测器的40万像素相机提供前所未有的宇宙视野

    一台基于超导纳米线光子探测器(SNSPD)的40万像素相机为天文学和量子技术应用提供了前所未有的低噪声、高分辨率成像能力。在探索遥远恒星和系外行星等微弱天体的过程中,捕捉每一个
    的头像 发表于 06-04 09:46 1.8w次阅读

    超导光子探测器在生物领域中的应用进展综述

    自2001年被发明以来,超导纳米线光子探测器(SNSPD)迅速成长为近红外波段的明星光子探测器,其在近红外波段如1550 nm处系统
    的头像 发表于 05-31 09:31 1.7w次阅读
    超导<b class='flag-5'>单</b><b class='flag-5'>光子</b><b class='flag-5'>探测器</b>在生物领域中的应用进展综述

    光子雪崩探测器SPAD助力激光扫描显微镜发展

    据麦姆斯咨询介绍,光子雪崩探测器(SPAD)是指工作电压高于击穿电压的APD,也称为盖革模式APD,通过配套淬灭电路和读出电路对雪崩倍增过程进行淬灭和恢复控制从而实现
    的头像 发表于 05-27 09:28 1220次阅读
    <b class='flag-5'>单</b><b class='flag-5'>光子</b>雪崩<b class='flag-5'>探测器</b>SPAD助力激光扫描显微镜发展

    什么是光子探测器

      光子探测器(SPD)是一种超低噪声器件,增强的灵敏度使其能够探测到光的小能量量子——光子
    的头像 发表于 03-29 06:34 760次阅读

    光子探测器改写量子计算规则

      科学家们通过基于光子探测器的方法在量子光学领域取得了突破,为改进量子计算铺平了道路。 帕德博恩大学的科学家们使用了一种新方法来确定光学量子态的特征。他们首次使用某些光子探测器(可以
    的头像 发表于 03-08 06:36 376次阅读

    光子探测器改写量子计算规则

    两位科学家通过特殊的实验装置表明,带有超导光子探测器的零差探测器对输入光子通量具有线性响应。换句话说,这意味着测量的信号与输入信号成正比。
    的头像 发表于 02-27 13:57 587次阅读

    金属探测器电路图分享

    金属探测器是一种应用广泛的探测器,主要用于探测金属物品。它可以通过电磁感应、X射线检测或微波检测等技术,对金属物品进行探测。金属
    的头像 发表于 02-02 12:20 7918次阅读
    金属<b class='flag-5'>探测器</b>电路图分享