0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

STM32CUBEIDE(15)----移植兆易创新SPI Nor Flash之GD25Q64Flash

嵌入式单片机MCU开发 来源:嵌入式单片机MCU开发 作者:嵌入式单片机MCU开 2023-07-26 16:01 次阅读

spi概述

SPI是串行外设接口(Serial Peripheral Interface)的缩写,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,越来越多的芯片集成了这种通信协议,比如 EEPROM,FLASH,实时时钟AD转换器。 W25Q64 是一款SPI接口的Flash芯片,其存储空间为 64Mbit,相当于8M字节。W25Q64可以支持 SPI 的模式 0 和模式 3,也就是 CPOL=0/CPHA=0 和CPOL=1/CPHA=1 这两种模式。 最近在弄ST和GD的课程,需要GD样片的可以加群申请:615061293 。

视频教学

https://www.bilibili.com/video/BV1nP411N7fu/

csdn课程

课程更加详细。

https://download.csdn.net/course/detail/35611

生成例程

使用STM32CUBEMX生成例程,这里使用NUCLEO-F103RB开发板

在这里插入图片描述

配置时钟树,配置时钟为64M。

在这里插入图片描述

查看原理图,PA2和PA3设置为开发板的串口。

在这里插入图片描述
配置串口。

在这里插入图片描述
由于需要输入数据,开启DMA进行接收。

在这里插入图片描述
中断。

在这里插入图片描述

SPI配置

在开发板中有arduino接口,配置这几个接口为spi。

在这里插入图片描述

本次实验使用的SPI与Flash通信,配置如下。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是MISO(主设备数据输入)、MOSI(主设备数据输出)、SCLK(时钟)、CS(片选)。
(1)MISO– Master Input Slave Output,主设备数据输入,从设备数据输出;
(2)MOSI– Master Output Slave Input,主设备数据输出,从设备数据输入;
(3)SCLK – Serial Clock,时钟信号,由主设备产生;
(4)CS – Chip Select,从设备使能信号,由主设备控制。

在这里插入图片描述

负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCLK时钟线存在的原因,由SCLK提供时钟脉冲,SDISDO则基于此脉冲完成数据传输。数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。因此,至少需要8次时钟信号的改变(上沿和下沿为一次),才能完成8位数据的传输。 时钟信号线SCLK只能由主设备控制,从设备不能控制。同样,在一个基于SPI的设备中,至少有一个主设备。这样的传输方式有一个优点,在数据位的传输过程中可以暂停,也就是时钟的周期可以为不等宽,因为时钟线由主设备控制,当没有时钟跳变时,从设备不采集或传送数据。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。芯片集成的SPI串行同步时钟极性和相位可以通过寄存器配置,IO模拟的SPI串行同步时钟需要根据从设备支持的时钟极性和相位来通讯。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。

在这里插入图片描述

其中,CS是从芯片是否被主芯片选中的控制信号,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),主芯片对此从芯片的操作才有效。这就使在同一条总线上连接多个SPI设备成为可能。 随便配置一个端口为CS片选,并且命名为CS。

在这里插入图片描述

NOR Flash

NOR Flash是一种非易失闪存技术,是Intel在1988年创建。是市场上两种主要的非易失闪存技术之一。 以GD25Q64E为例,该 Flash为64M-bit大小,即8192K-Byte

在这里插入图片描述

W25Q64将8M的容量分为127个块(Block),每个块大小为64K字节,每个块又分为16个扇区(Sector),每个扇区4K个字节。W25Q64的最小擦除单位为一个扇区,也就是每次必须擦除4K个字节。 即4K16128=8192K=8M

在这里插入图片描述

W25Q64的原理及应用

复位初始化

对于复位,需要发送0x66和0x99

在这里插入图片描述

代码中的初始化。

/* Reset Operations */
#define RESET_ENABLE_CMD                     0x66
#define RESET_MEMORY_CMD                     0x99
/**
  * @brief  Initializes the W25Q128FV interface.
  * @retval None
  */
uint8_t BSP_W25Qx_Init(void)
{ 
    /* Reset W25Qxxx */
    BSP_W25Qx_Reset();

    return BSP_W25Qx_GetStatus();
}

/**
  * @brief  This function reset the W25Qx.
  * @retval None
  */
static void    BSP_W25Qx_Reset(void)
{
    uint8_t cmd[2] = {RESET_ENABLE_CMD,RESET_MEMORY_CMD};

    W25Qx_Enable();
    /* Send the reset command */
    HAL_SPI_Transmit(&hspi1, cmd, 2, W25Qx_TIMEOUT_VALUE);    
    W25Qx_Disable();

}

在这里插入图片描述

ID

对于兆易创新W25Q64,主要有三种查询ID方式。

在这里插入图片描述

可以使用90H查询设备ID,以判断是否是W25Q64设备。

在这里插入图片描述

/* Identification Operations */
#define READ_ID_CMD                          0x9F
/**
  * @brief  Read Manufacture/Device ID.
    * @param  return value address
  * @retval None
  */
void BSP_W25Qx_Read_ID(uint8_t *ID)
{
    uint8_t cmd[4] = {READ_ID_CMD,0x00,0x00,0x00};

    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    
    /* Reception of the data */
    HAL_SPI_Receive(&hspi1,ID, 2, W25Qx_TIMEOUT_VALUE);
    W25Qx_Disable();

}

在这里插入图片描述

读取数据

对于兆易创新W25Q64,读取数据使用0x03指令,后面添加需要读取的数据地址。 数据可以一直进行读取,当不需要读取数据时候将片选CS拉高,关闭时钟SCLK即可。

在这里插入图片描述

#define READ_CMD                             0x03

/**
  * @brief  Reads an amount of data from the QSPI memory.
  * @param  pData: Pointer to data to be read
  * @param  ReadAddr: Read start address
  * @param  Size: Size of data to read    
  * @retval QSPI memory status
  */
uint8_t BSP_W25Qx_Read(uint8_t* pData, uint32_t ReadAddr, uint32_t Size)
{
    uint8_t cmd[4];

    /* Configure the command */
    cmd[0] = READ_CMD;
    cmd[1] = (uint8_t)(ReadAddr > > 16);
    cmd[2] = (uint8_t)(ReadAddr > > 8);
    cmd[3] = (uint8_t)(ReadAddr);

    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    
    /* Reception of the data */
    if (HAL_SPI_Receive(&hspi1, pData,Size,W25Qx_TIMEOUT_VALUE) != HAL_OK)
  {
    return W25Qx_ERROR;
  }
    W25Qx_Disable();
    return W25Qx_OK;
}

以读取10个数据为例子,波形如下所示。

BSP_W25Qx_Read(rData2,0x1000,0x00a);

在这里插入图片描述

擦除扇区

最小的擦除单位是扇区,擦除指令为0x20和3字节的地址。

在这里插入图片描述

#define SECTOR_ERASE_CMD                     0x20
uint8_t BSP_W25Qx_Erase_Block(uint32_t Address)
{
    uint8_t cmd[4];
    uint32_t tickstart = HAL_GetTick();
    cmd[0] = SECTOR_ERASE_CMD;
    cmd[1] = (uint8_t)(Address > > 16);
    cmd[2] = (uint8_t)(Address > > 8);
    cmd[3] = (uint8_t)(Address);

    /* Enable write operations */
    BSP_W25Qx_WriteEnable();

    /*Select the FLASH: Chip Select low */
    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    
    /*Deselect the FLASH: Chip Select high */
    W25Qx_Disable();

    /* Wait the end of Flash writing */
    while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);
    {
        /* Check for the Timeout */
    if((HAL_GetTick() - tickstart) > W25Q128FV_SECTOR_ERASE_MAX_TIME)
    {        
            return W25Qx_TIMEOUT;
    }
    }
    return W25Qx_OK;
}

在这里插入图片描述

写数据

对于写数据到flash中,使用0x02指令进行写数据,后面还需要指定24位地址,才能进行写数据。

在这里插入图片描述

#define PAGE_PROG_CMD                        0x02
/**
  * @brief  Writes an amount of data to the QSPI memory.
  * @param  pData: Pointer to data to be written
  * @param  WriteAddr: Write start address
  * @param  Size: Size of data to write,No more than 256byte.    
  * @retval QSPI memory status
  */
uint8_t BSP_W25Qx_Write(uint8_t* pData, uint32_t WriteAddr, uint32_t Size)
{
    uint8_t cmd[4];
    uint32_t end_addr, current_size, current_addr;
    uint32_t tickstart = HAL_GetTick();

    /* Calculation of the size between the write address and the end of the page */
  current_addr = 0;

  while (current_addr <= WriteAddr)//判断地址属于哪一扇区开始
  {
    current_addr += W25Q128FV_PAGE_SIZE;//0x100- > 256 bytes
  }
  current_size = current_addr - WriteAddr;

  /* Check if the size of the data is less than the remaining place in the page */
  if (current_size > Size)
  {
    current_size = Size;
  }

  /* Initialize the adress variables *///写入地址大小范围
  current_addr = WriteAddr;
  end_addr = WriteAddr + Size;

  /* Perform the write page by page */
  do
  {
        /* Configure the command */
        cmd[0] = PAGE_PROG_CMD;
        cmd[1] = (uint8_t)(current_addr > > 16);
        cmd[2] = (uint8_t)(current_addr > > 8);
        cmd[3] = (uint8_t)(current_addr);

        /* Enable write operations */
        BSP_W25Qx_WriteEnable();

        W25Qx_Enable();
    /* Send the command */
    if (HAL_SPI_Transmit(&hspi1,cmd, 4, W25Qx_TIMEOUT_VALUE) != HAL_OK)
    {
      return W25Qx_ERROR;
    }

    /* Transmission of the data */
    if (HAL_SPI_Transmit(&hspi1, pData,current_size, W25Qx_TIMEOUT_VALUE) != HAL_OK)
    {
      return W25Qx_ERROR;
    }
            W25Qx_Disable();
        /* Wait the end of Flash writing */
        while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);
        {
            /* Check for the Timeout */
            if((HAL_GetTick() - tickstart) > W25Qx_TIMEOUT_VALUE)
            {        
                return W25Qx_TIMEOUT;
            }
        }

    /* Update the address and size variables for next page programming */
    current_addr += current_size;
    pData += current_size;
    current_size = ((current_addr + W25Q128FV_PAGE_SIZE) > end_addr) ? (end_addr - current_addr) : W25Q128FV_PAGE_SIZE;
  } while (current_addr < end_addr);


    return W25Qx_OK;
}

对flash的0x1000地址进行写数据,指令如下。

BSP_W25Qx_Write(wData2,0x1000,0x000a);

波形如下所示。

在这里插入图片描述

W25Qx.c

/*********************************************************************************************************
*
* File                : ws_W25Qx.c
* Hardware Environment: 
* Build Environment   : RealView MDK-ARM  Version: 4.20
* Version             : V1.0
* By                  : 
*
*                                  (c) Copyright 2005-2011, WaveShare
*                                       http://www.waveshare.net
*                                          All Rights Reserved
*
*********************************************************************************************************/

#include "W25Qx.h"

/**
  * @brief  Initializes the W25Q128FV interface.
  * @retval None
  */
uint8_t BSP_W25Qx_Init(void)
{ 
    /* Reset W25Qxxx */
    BSP_W25Qx_Reset();

    return BSP_W25Qx_GetStatus();
}

/**
  * @brief  This function reset the W25Qx.
  * @retval None
  */
static void    BSP_W25Qx_Reset(void)
{
    uint8_t cmd[2] = {RESET_ENABLE_CMD,RESET_MEMORY_CMD};

    W25Qx_Enable();
    /* Send the reset command */
    HAL_SPI_Transmit(&hspi1, cmd, 2, W25Qx_TIMEOUT_VALUE);    
    W25Qx_Disable();

}

/**
  * @brief  Reads current status of the W25Q128FV.
  * @retval W25Q128FV memory status
  */
static uint8_t BSP_W25Qx_GetStatus(void)
{
    uint8_t cmd[] = {READ_STATUS_REG1_CMD};
    uint8_t status;

    W25Qx_Enable();
    /* Send the read status command */
    HAL_SPI_Transmit(&hspi1, cmd, 1, W25Qx_TIMEOUT_VALUE);    
    /* Reception of the data */
    HAL_SPI_Receive(&hspi1,&status, 1, W25Qx_TIMEOUT_VALUE);
    W25Qx_Disable();

    /* Check the value of the register */
  if((status & W25Q128FV_FSR_BUSY) != 0)
  {
    return W25Qx_BUSY;
  }
    else
    {
        return W25Qx_OK;
    }        
}

/**
  * @brief  This function send a Write Enable and wait it is effective.
  * @retval None
  */
uint8_t BSP_W25Qx_WriteEnable(void)
{
    uint8_t cmd[] = {WRITE_ENABLE_CMD};
    uint32_t tickstart = HAL_GetTick();

    /*Select the FLASH: Chip Select low */
    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 1, W25Qx_TIMEOUT_VALUE);    
    /*Deselect the FLASH: Chip Select high */
    W25Qx_Disable();

    /* Wait the end of Flash writing */
    while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);
    {
        /* Check for the Timeout */
    if((HAL_GetTick() - tickstart) > W25Qx_TIMEOUT_VALUE)
    {        
            return W25Qx_TIMEOUT;
    }
    }

    return W25Qx_OK;
}

/**
  * @brief  Read Manufacture/Device ID.
    * @param  return value address
  * @retval None
  */
void BSP_W25Qx_Read_ID(uint8_t *ID)
{
    uint8_t cmd[4] = {READ_ID_CMD,0x00,0x00,0x00};

    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    
    /* Reception of the data */
    HAL_SPI_Receive(&hspi1,ID, 2, W25Qx_TIMEOUT_VALUE);
    W25Qx_Disable();

}

/**
  * @brief  Reads an amount of data from the QSPI memory.
  * @param  pData: Pointer to data to be read
  * @param  ReadAddr: Read start address
  * @param  Size: Size of data to read    
  * @retval QSPI memory status
  */
uint8_t BSP_W25Qx_Read(uint8_t* pData, uint32_t ReadAddr, uint32_t Size)
{
    uint8_t cmd[4];

    /* Configure the command */
    cmd[0] = READ_CMD;
    cmd[1] = (uint8_t)(ReadAddr > > 16);
    cmd[2] = (uint8_t)(ReadAddr > > 8);
    cmd[3] = (uint8_t)(ReadAddr);

    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    
    /* Reception of the data */
    if (HAL_SPI_Receive(&hspi1, pData,Size,W25Qx_TIMEOUT_VALUE) != HAL_OK)
  {
    return W25Qx_ERROR;
  }
    W25Qx_Disable();
    return W25Qx_OK;
}

/**
  * @brief  Writes an amount of data to the QSPI memory.
  * @param  pData: Pointer to data to be written
  * @param  WriteAddr: Write start address
  * @param  Size: Size of data to write,No more than 256byte.    
  * @retval QSPI memory status
  */
uint8_t BSP_W25Qx_Write(uint8_t* pData, uint32_t WriteAddr, uint32_t Size)
{
    uint8_t cmd[4];
    uint32_t end_addr, current_size, current_addr;
    uint32_t tickstart = HAL_GetTick();

    /* Calculation of the size between the write address and the end of the page */
  current_addr = 0;

  while (current_addr <= WriteAddr)//判断地址属于哪一扇区开始
  {
    current_addr += W25Q128FV_PAGE_SIZE;//0x100- > 256 bytes
  }
  current_size = current_addr - WriteAddr;

  /* Check if the size of the data is less than the remaining place in the page */
  if (current_size > Size)
  {
    current_size = Size;
  }

  /* Initialize the adress variables *///写入地址大小范围
  current_addr = WriteAddr;
  end_addr = WriteAddr + Size;

  /* Perform the write page by page */
  do
  {
        /* Configure the command */
        cmd[0] = PAGE_PROG_CMD;
        cmd[1] = (uint8_t)(current_addr > > 16);
        cmd[2] = (uint8_t)(current_addr > > 8);
        cmd[3] = (uint8_t)(current_addr);

        /* Enable write operations */
        BSP_W25Qx_WriteEnable();

        W25Qx_Enable();
    /* Send the command */
    if (HAL_SPI_Transmit(&hspi1,cmd, 4, W25Qx_TIMEOUT_VALUE) != HAL_OK)
    {
      return W25Qx_ERROR;
    }

    /* Transmission of the data */
    if (HAL_SPI_Transmit(&hspi1, pData,current_size, W25Qx_TIMEOUT_VALUE) != HAL_OK)
    {
      return W25Qx_ERROR;
    }
            W25Qx_Disable();
        /* Wait the end of Flash writing */
        while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);
        {
            /* Check for the Timeout */
            if((HAL_GetTick() - tickstart) > W25Qx_TIMEOUT_VALUE)
            {        
                return W25Qx_TIMEOUT;
            }
        }

    /* Update the address and size variables for next page programming */
    current_addr += current_size;
    pData += current_size;
    current_size = ((current_addr + W25Q128FV_PAGE_SIZE) > end_addr) ? (end_addr - current_addr) : W25Q128FV_PAGE_SIZE;
  } while (current_addr < end_addr);


    return W25Qx_OK;
}

/**
  * @brief  Erases the specified block of the QSPI memory. 
  * @param  BlockAddress: Block address to erase  
  * @retval QSPI memory status
  */
uint8_t BSP_W25Qx_Erase_Block(uint32_t Address)
{
    uint8_t cmd[4];
    uint32_t tickstart = HAL_GetTick();
    cmd[0] = SECTOR_ERASE_CMD;
    cmd[1] = (uint8_t)(Address > > 16);
    cmd[2] = (uint8_t)(Address > > 8);
    cmd[3] = (uint8_t)(Address);

    /* Enable write operations */
    BSP_W25Qx_WriteEnable();

    /*Select the FLASH: Chip Select low */
    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 4, W25Qx_TIMEOUT_VALUE);    
    /*Deselect the FLASH: Chip Select high */
    W25Qx_Disable();

    /* Wait the end of Flash writing */
    while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);
    {
        /* Check for the Timeout */
    if((HAL_GetTick() - tickstart) > W25Q128FV_SECTOR_ERASE_MAX_TIME)
    {        
            return W25Qx_TIMEOUT;
    }
    }
    return W25Qx_OK;
}

/**
  * @brief  Erases the entire QSPI memory.This function will take a very long time.
  * @retval QSPI memory status
  */
uint8_t BSP_W25Qx_Erase_Chip(void)
{
    uint8_t cmd[4];
    uint32_t tickstart = HAL_GetTick();
    cmd[0] = SECTOR_ERASE_CMD;

    /* Enable write operations */
    BSP_W25Qx_WriteEnable();

    /*Select the FLASH: Chip Select low */
    W25Qx_Enable();
    /* Send the read ID command */
    HAL_SPI_Transmit(&hspi1, cmd, 1, W25Qx_TIMEOUT_VALUE);    
    /*Deselect the FLASH: Chip Select high */
    W25Qx_Disable();

    /* Wait the end of Flash writing */
    while(BSP_W25Qx_GetStatus() != W25Qx_BUSY);
    {
        /* Check for the Timeout */
    if((HAL_GetTick() - tickstart) > W25Q128FV_BULK_ERASE_MAX_TIME)
    {        
            return W25Qx_TIMEOUT;
    }
    }
    return W25Qx_OK;
}

W25Qx.h

/*********************************************************************************************************
*
* File                : W25Qx.h
* Hardware Environment: 
* Build Environment   : RealView MDK-ARM  Version: 5.15
* Version             : V1.0
* By                  : 
*
*                                  (c) Copyright 2005-2015, WaveShare
*                                       http://www.waveshare.net
*                                          All Rights Reserved
*
*********************************************************************************************************/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __W25Qx_H
#define __W25Qx_H

#ifdef __cplusplus
 extern "C" {
#endif 

/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx.h"
#include "spi.h"

/** @addtogroup BSP
  * @{
  */ 

/** @addtogroup Components
  * @{
  */ 

/** @addtogroup W25Q128FV
  * @{
  */

/** @defgroup W25Q128FV_Exported_Types
  * @{
  */

/**
  * @}
  */ 

/** @defgroup W25Q128FV_Exported_Constants
  * @{
  */

/** 
  * @brief  W25Q128FV Configuration  
  */  
#define W25Q128FV_FLASH_SIZE                  0x1000000 /* 128 MBits = > 16MBytes */
#define W25Q128FV_SECTOR_SIZE                 0x10000   /* 256 sectors of 64KBytes */
#define W25Q128FV_SUBSECTOR_SIZE              0x1000    /* 4096 subsectors of 4kBytes */
#define W25Q128FV_PAGE_SIZE                   0x100     /* 65536 pages of 256 bytes */

#define W25Q128FV_DUMMY_CYCLES_READ           4
#define W25Q128FV_DUMMY_CYCLES_READ_QUAD      10

#define W25Q128FV_BULK_ERASE_MAX_TIME         250000
#define W25Q128FV_SECTOR_ERASE_MAX_TIME       3000
#define W25Q128FV_SUBSECTOR_ERASE_MAX_TIME    800
#define W25Qx_TIMEOUT_VALUE 1000

/** 
  * @brief  W25Q128FV Commands  
  */  
/* Reset Operations */
#define RESET_ENABLE_CMD                     0x66
#define RESET_MEMORY_CMD                     0x99

#define ENTER_QPI_MODE_CMD                   0x38
#define EXIT_QPI_MODE_CMD                    0xFF

/* Identification Operations */
#define READ_ID_CMD                          0x90
#define DUAL_READ_ID_CMD                     0x92
#define QUAD_READ_ID_CMD                     0x94
#define READ_JEDEC_ID_CMD                    0x9F

/* Read Operations */
#define READ_CMD                             0x03
#define FAST_READ_CMD                        0x0B
#define DUAL_OUT_FAST_READ_CMD               0x3B
#define DUAL_INOUT_FAST_READ_CMD             0xBB
#define QUAD_OUT_FAST_READ_CMD               0x6B
#define QUAD_INOUT_FAST_READ_CMD             0xEB

/* Write Operations */
#define WRITE_ENABLE_CMD                     0x06
#define WRITE_DISABLE_CMD                    0x04

/* Register Operations */
#define READ_STATUS_REG1_CMD                  0x05
#define READ_STATUS_REG2_CMD                  0x35
#define READ_STATUS_REG3_CMD                  0x15

#define WRITE_STATUS_REG1_CMD                 0x01
#define WRITE_STATUS_REG2_CMD                 0x31
#define WRITE_STATUS_REG3_CMD                 0x11


/* Program Operations */
#define PAGE_PROG_CMD                        0x02
#define QUAD_INPUT_PAGE_PROG_CMD             0x32


/* Erase Operations */
#define SECTOR_ERASE_CMD                     0x20
#define CHIP_ERASE_CMD                       0xC7

#define PROG_ERASE_RESUME_CMD                0x7A
#define PROG_ERASE_SUSPEND_CMD               0x75


/* Flag Status Register */
#define W25Q128FV_FSR_BUSY                    ((uint8_t)0x01)    /*!< busy */
#define W25Q128FV_FSR_WREN                    ((uint8_t)0x02)    /*!< write enable */
#define W25Q128FV_FSR_QE                      ((uint8_t)0x02)    /*!< quad enable */


#define W25Qx_Enable()             HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_RESET)
#define W25Qx_Disable()         HAL_GPIO_WritePin(CS_GPIO_Port, CS_Pin, GPIO_PIN_SET)

#define W25Qx_OK            ((uint8_t)0x00)
#define W25Qx_ERROR         ((uint8_t)0x01)
#define W25Qx_BUSY          ((uint8_t)0x02)
#define W25Qx_TIMEOUT                ((uint8_t)0x03)


uint8_t BSP_W25Qx_Init(void);
static void    BSP_W25Qx_Reset(void);
static uint8_t BSP_W25Qx_GetStatus(void);
uint8_t BSP_W25Qx_WriteEnable(void);
void BSP_W25Qx_Read_ID(uint8_t *ID);
uint8_t BSP_W25Qx_Read(uint8_t* pData, uint32_t ReadAddr, uint32_t Size);
uint8_t BSP_W25Qx_Write(uint8_t* pData, uint32_t WriteAddr, uint32_t Size);
uint8_t BSP_W25Qx_Erase_Block(uint32_t Address);
uint8_t BSP_W25Qx_Erase_Chip(void);

/**
  * @}
  */

/** @defgroup W25Q128FV_Exported_Functions
  * @{
  */ 
/**
  * @}
  */ 

/**
  * @}
  */ 

/**
  * @}
  */ 

/**
  * @}
  */

#ifdef __cplusplus
}
#endif

#endif /* __W25Qx_H */

案例

向0扇区(0块0扇区),17扇区(1块1扇区),34扇区(2块2扇区)分别写入0x200的数据。

头文件定义

/* USER CODE BEGIN Includes */
#include "stdio.h"

#include "W25Qx.h"
/* USER CODE END Includes */

串口接收和flash数组定义

/* USER CODE BEGIN PV */
#define BUFFERSIZE 255           //可以接收的最大字符个数       
uint8_t ReceiveBuff[BUFFERSIZE]; //接收缓冲区
uint8_t recv_end_flag = 0,Rx_len;//接收完成中断标志,接收到字符长度

uint8_t wData1[0x200];
uint8_t wData2[0x200];
uint8_t wData3[0x200];

uint8_t rData1[0x200];
uint8_t rData2[0x200];
uint8_t rData3[0x200];
uint8_t ID[4];
uint32_t i;

uint8_t flag[1] ;
int i_flag = 0;
/* USER CODE END PV */

串口重定向

/* USER CODE BEGIN PFP */
void uart2_data(void);
#ifdef __GNUC__                                    //串口重定向
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif 
PUTCHAR_PROTOTYPE
{
    HAL_UART_Transmit(&huart2 , (uint8_t *)&ch, 1, 0xFFFF);
    return ch;
}
/* USER CODE END PFP */

串口中断设置

#include "stm32f1xx_it.c"文件中断外部变量引用:

/* USER CODE BEGIN 0 */
#define BUFFERSIZE 255    //可接收的最大数据量
extern uint8_t recv_end_flag,Rx_len,bootfirst;
/* USER CODE END 0 */

串口2中断函数:

/**
  * @brief This function handles USART2 global interrupt.
  */
void USART2_IRQHandler(void)
{
  /* USER CODE BEGIN USART2_IRQn 0 */

  /* USER CODE END USART2_IRQn 0 */
  HAL_UART_IRQHandler(&huart2);
  /* USER CODE BEGIN USART2_IRQn 1 */
    uint32_t temp;
    if(USART2 == huart2.Instance)//判断是否为串口2中断

    {      
        if(RESET != __HAL_UART_GET_FLAG(&huart2,UART_FLAG_IDLE))//如果为串口2
        {
            __HAL_UART_CLEAR_IDLEFLAG(&huart2);//清除中断标志
      HAL_UART_DMAStop(&huart2);//停止DMA接收
             temp  = __HAL_DMA_GET_COUNTER(&hdma_usart2_rx);//获取DMA当前还有多少未填充
              Rx_len =  BUFFERSIZE - temp; //计算串口接收到的数据个数
              recv_end_flag = 1;
         }
        }

  /* USER CODE END USART2_IRQn 1 */
}

主程序

读取ID和flash数据及擦除。

/* USER CODE BEGIN 2 */
    printf("GD Nor Flash案例n");
     __HAL_UART_ENABLE_IT(&huart2, UART_IT_IDLE);//使能串口1 IDLE中断 

    /*##-1- Read the device ID  ########################*/ 
    BSP_W25Qx_Init();//初始化W25Q128
    BSP_W25Qx_Read_ID(ID);//读取ID

    if((ID[0] != 0xC8) | (ID[1] != 0x16))
    {
        Error_Handler();//如果 ID不对打印错误
    }
    else//ID正确,打印ID
    {
        printf("W25Q64 ID : ");
        for(i=0;i< 2;i++)
        {
            printf("0x%02X ",ID[i]);
        }
        printf("rnrn");
    }


/**************************读取第0扇区数据**************************************************************/

    /*##-3- Read the flash     ########################*/ 
    /*读取数据,rData读取数据的指针,起始地址0x00,读取数据长度0x200*/
    if(BSP_W25Qx_Read(rData1,0x0,0x200)== W25Qx_OK)
        printf("读取原始的0个扇区数据成功!n");
    else
        Error_Handler();
    /*打印数据*/    
    printf("读取原始的0个扇区数据为: rn");

    for(i =0;i< 0x200;i++)
    {
        if(i%20==0)
            printf("n0扇区第%d到%d的数据为:rn",i,i+19);
                printf("0x%02X  ",rData1[i]);
    }

    printf("n");


/**************************读取第17扇区数据**************************************************************/

    /*##-3- Read the flash     ########################*/ 
    /*读取数据,rData读取数据的指针,起始地址0x1000,读取数据长度0x200*/
    if(BSP_W25Qx_Read(rData2,0x11000,0x200)== W25Qx_OK)
        printf("读取原始的17个扇区数据成功!n");
    else
        Error_Handler();
    /*打印数据*/    
    printf("读取原始的2个扇区数据为:");

    for(i =0;i< 0x200;i++)
    {
        if(i%20==0)
            printf("n17扇区第%d到%d的数据为:rn",i,i+19);
                printf("0x%02X  ",rData2[i]);
    }

    printf("n");    


/**************************读取第34扇区数据**************************************************************/

    /*##-3- Read the flash     ########################*/ 
    /*读取数据,rData读取数据的指针,起始地址0x2000,读取数据长度0x200*/
    if(BSP_W25Qx_Read(rData3,0x22000,0x200)== W25Qx_OK)
        printf("读取原始的34个扇区数据成功!n");
    else
        Error_Handler();
    /*打印数据*/    
    printf("读取原始的34个扇区数据为: ");

    for(i =0;i< 0x200;i++)
    {
        if(i%20==0)
            printf("n34扇区第%d到%d的数据为:rn",i,i+19);
                printf("0x%02X  ",rData3[i]);
    }

    printf("n");    



/**************************清除第0扇区数据为0**************************************************************/



    /*##-2- Erase Block ##################################*/ 
    if(BSP_W25Qx_Erase_Block(0) == W25Qx_OK)
        printf(" QSPI Erase Block okrn");
    else
        Error_Handler();

    /*##-2- Written to the flash ########################*/ 
    /* fill buffer */
    printf(" 初始化数据,清零第0扇区前0x200的数据!rn");
    for(i =0;i< 0x200;i ++)
    {
            wData1[i] = 0;
          rData1[i] = 0;
    }
    /*写入数据,wData写入数据的指针,起始地址0x00,写入数据长度0x200*/
    if(BSP_W25Qx_Write(wData1,0x00,0x200)== W25Qx_OK)
        printf("清零第0扇区前0x200的数据成功!rn");
    else
        Error_Handler();




    /*##-3- Read the flash     ########################*/ 
    /*读取数据,rData读取数据的指针,起始地址0x00,读取数据长度0x200*/
    if(BSP_W25Qx_Read(rData1,0x00,0x200)== W25Qx_OK)
        printf("读取第0扇区前0x200数据成功!rnrn");
    else
        Error_Handler();
    /*打印数据*/    
    printf("读取第0扇区前0x200数据为: rn");

    for(i =0;i< 0x200;i++)
    {
        if(i%20==0)
            printf("n第%d到%d的数据为:rn",i,i+19);
                printf("0x%02X  ",rData1[i]);
    }

    printf("n");


/**************************清除第17扇区数据为0**************************************************************/



    /*##-2- Erase Block ##################################*/ 
    if(BSP_W25Qx_Erase_Block(0x11000) == W25Qx_OK)
        printf(" QSPI Erase Block okrn");
    else
        Error_Handler();

    /*##-2- Written to the flash ########################*/ 
    /* fill buffer */
    printf(" 初始化数据,清零第17扇区前0x200的数据!rn");
    for(i =0;i< 0x200;i ++)
    {
            wData2[i] = 0;
          rData2[i] = 0;
    }
    /*写入数据,wData写入数据的指针,起始地址0x1000,写入数据长度0x200*/
    if(BSP_W25Qx_Write(wData2,0x11000,0x200)== W25Qx_OK)
        printf("清零第2扇区前0x200的数据成功!rn");
    else
        Error_Handler();




    /*##-3- Read the flash     ########################*/ 
    /*读取数据,rData读取数据的指针,起始地址0x00,读取数据长度0x200*/
    if(BSP_W25Qx_Read(rData2,0x11000,0x200)== W25Qx_OK)
        printf("读取第17扇区前0x200数据成功!rnrn");
    else
        Error_Handler();
    /*打印数据*/    
    printf("读取第17扇区前0x200数据为: rn");

    for(i =0;i< 0x200;i++)
    {
        if(i%20==0)
            printf("n第%d到%d的数据为:rn",i,i+19);
                printf("0x%02X  ",rData2[i]);
    }

    printf("n");


/**************************清除第34扇区数据为0**************************************************************/



    /*##-2- Erase Block ##################################*/ 
    if(BSP_W25Qx_Erase_Block(0x22000) == W25Qx_OK)
        printf(" QSPI Erase Block okrn");
    else
        Error_Handler();

    /*##-2- Written to the flash ########################*/ 
    /* fill buffer */
    printf(" 初始化数据,清零第34扇区前0x200的数据!rn");
    for(i =0;i< 0x200;i ++)
    {
            wData3[i] = 0;
          rData3[i] = 0;
    }
    /*写入数据,wData写入数据的指针,起始地址0x22000,写入数据长度0x200*/
    if(BSP_W25Qx_Write(wData3,0x22000,0x200)== W25Qx_OK)
        printf("清零第34扇区前0x200的数据成功!rn");
    else
        Error_Handler();




    /*##-3- Read the flash     ########################*/ 
    /*读取数据,rData读取数据的指针,起始地址0x00,读取数据长度0x200*/
    if(BSP_W25Qx_Read(rData3,0x22000,0x200)== W25Qx_OK)
        printf("读取第34扇区前0x200数据成功!rnrn");
    else
        Error_Handler();
    /*打印数据*/    
    printf("读取第34扇区前0x200数据为: rn");

    for(i =0;i< 0x200;i++)
    {
        if(i%20==0)
            printf("n第%d到%d的数据为:rn",i,i+19);
                printf("0x%02X  ",rData3[i]);
    }

    printf("n");


  /* USER CODE END 2 */

主程序。

/* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
        uart2_data();
        HAL_Delay(100);

  }
  /* USER CODE END 3 */

数据处理

/* USER CODE BEGIN 4 */
void uart2_data(void)
{
    if(recv_end_flag ==1)//接收完成标志
    {


if(ReceiveBuff[0]==0x00)
        {
            printf("写入数据长度:%dn",Rx_len-2);
            for(int i =0;i< Rx_len-2;i++)
            {
                wData1[ (i+ReceiveBuff[1]) ] = ReceiveBuff[i+2];

            }


        /*##-2- Erase Block ##################################*/ 
        if(BSP_W25Qx_Erase_Block(0) == W25Qx_OK)
            printf(" QSPI Erase Block okrn");
        else
            Error_Handler();


        /*写入数据,wData写入数据的指针,起始地址0x00,写入数据长度0x200*/
        if(BSP_W25Qx_Write(wData1,0x00,0x200)== W25Qx_OK)

            printf("扇区0数据成功~~~~~~~~~~~~~~~~~~~~~~~~~~!rn");
        else
            Error_Handler();

        if(BSP_W25Qx_Read(rData1,0x00,0x200)== W25Qx_OK)
            printf("读取扇区0前0x200数据成功!rnrn");
        else
            Error_Handler();
        /*打印数据*/    
        printf("读取扇区0前0x200数据为: rn");

        for(i =0;i< 0x200;i++)
        {
            if(i%20==0)
                printf("n第%d到%d的数据为:rn",i,i+19);
                    printf("0x%02X  ",wData1[i]);
        }

        printf("n");

    }



    else if(ReceiveBuff[0]==0x17)
    {
            printf("写入数据长度:%dn",Rx_len-2);
            for(int i =0;i< Rx_len-2;i++)
            {
//                Data[i]=ReceiveBuff[i+2];
                wData2[ (i+ReceiveBuff[1]) ] = ReceiveBuff[i+2];
            }


        /*##-17- Erase Block ##################################*/ 
        if(BSP_W25Qx_Erase_Block(0x11000) == W25Qx_OK)
            printf(" QSPI Erase Block okrn");
        else
            Error_Handler();


        /*写入数据,wData写入数据的指针,起始地址0x11000,写入数据长度0x200*/
        if(BSP_W25Qx_Write(wData2,0x11000,0x200)== W25Qx_OK)

            printf("扇区17数据成功~~~~~~~~~~~~~~~~~~~~~~~~~~!rn");
        else
            Error_Handler();

        if(BSP_W25Qx_Read(rData2,0x11000,0x200)== W25Qx_OK)
            printf("读取扇区17前0x200数据成功!rnrn");
        else
            Error_Handler();
        /*打印数据*/    
        printf("读取扇区17前0x200数据为: rn");

        for(i =0;i< 0x200;i++)
        {
            if(i%20==0)
                printf("n第%d到%d的数据为:rn",i,i+19);
                    printf("0x%02X  ",rData2[i]);
        }

        printf("n");

    }        



    else if(ReceiveBuff[0]==0x34)
    {
            printf("写入数据长度:%dn",Rx_len-2);
            for(int i =0;i< Rx_len-2;i++)
            {
//                Data[i]=ReceiveBuff[i+2];
                wData3[ (i+ReceiveBuff[1]) ] = ReceiveBuff[i+2];
            }


        /*##-22- Erase Block ##################################*/ 
        if(BSP_W25Qx_Erase_Block(0x22000) == W25Qx_OK)
            printf(" QSPI Erase Block okrn");
        else
            Error_Handler();


        /*写入数据,wData写入数据的指针,起始地址0x22000,写入数据长度0x200*/
        if(BSP_W25Qx_Write(wData3,0x22000,0x200)== W25Qx_OK)

            printf("扇区34数据成功~~~~~~~~~~~~~~~~~~~~~~~~~~!rn");
        else
            Error_Handler();

        if(BSP_W25Qx_Read(rData3,0x22000,0x200)== W25Qx_OK)
            printf("读取扇区34前0x200数据成功!rnrn");
        else
            Error_Handler();
        /*打印数据*/    
        printf("读取扇区34前0x200数据为: rn");

        for(i =0;i< 0x200;i++)
        {
            if(i%20==0)
                printf("n第%d到%d的数据为:rn",i,i+19);
                    printf("0x%02X  ",rData3[i]);
        }

        printf("n");

    }    




        else
            printf("输入错误!");

    for(int i = 0; i <  Rx_len ; i++) //清空接收缓存区
    ReceiveBuff[i]=0;//0
    Rx_len=0;//接收数据长度清零
    recv_end_flag=0;//接收标志位清零
        //开启下一次接收
    HAL_UART_Receive_DMA(&huart2,(uint8_t*)ReceiveBuff,BUFFERSIZE);
    }

}

/* USER CODE END 4 */

演示

W25Q64芯片型号的ID为0XEF17,下方读取为0XC816,所以读取成功。

在这里插入图片描述

开机会打印出0,17,34扇区的前0x200个数据。

在这里插入图片描述

打印完原始数据之后将数据全部清零,清零完成如下图所示。

在这里插入图片描述

串口定义了ReceiveBuff[0]的数据为写入什么扇区,ReceiveBuff[0]为1写入扇区1,ReceiveBuff[0]为2写入扇区2,ReceiveBuff[0]为3写入扇区3,若为其他数据,则打印输入错误;ReceiveBuff[1]则为写入的位置。 输入:00 05 01 02 03 04 向扇区0的的05号位置开始写入数据01 02 03 04。

在这里插入图片描述

输入:00 28 11 12 13 14 15 向扇区0的的40(28是十六进制)号位置开始写入数据11 12 13 14 15。

在这里插入图片描述

输入:17 10 aa bb 向扇区17的的16(10是十六进制)号位置开始写入数据aa bb。

在这里插入图片描述

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FlaSh
    +关注

    关注

    10

    文章

    1633

    浏览量

    147951
  • STM32
    +关注

    关注

    2270

    文章

    10896

    浏览量

    355767
  • SPI
    SPI
    +关注

    关注

    17

    文章

    1706

    浏览量

    91515
  • 兆易创新
    +关注

    关注

    23

    文章

    604

    浏览量

    80595
收藏 人收藏

    评论

    相关推荐

    GD32F470紫藤派开发板使用手册】第十一讲 SPI-SPI NOR FLASH读写实验

    通过本实验主要学习以下内容: •SPI简介 •GD32F470 SPI简介 •SPI NOR FLASH
    的头像 发表于 05-17 09:57 1772次阅读
    【<b class='flag-5'>GD</b>32F470紫藤派开发板使用手册】第十一讲 <b class='flag-5'>SPI-SPI</b> <b class='flag-5'>NOR</b> <b class='flag-5'>FLASH</b>读写实验

    高速4通道及兼容xSPI规格的8通道SPI NOR Flash再添新员

    业界领先的半导体器件供应商创新GigaDevice(股票代码 603986)宣布,推出全新一代高速4通道及兼容xSPI规格的8通道SPI NOR
    发表于 05-13 16:01 5065次阅读

    创新SPI NOR Flash GD25LX256E喜获“中国芯”奖项

    业界领先的半导体器件供应商创新GigaDevice其旗下全新一代高速8通道SPI NOR Flash
    发表于 10-25 18:24 3137次阅读

    创新授权世强代理,开通NOR Flash,Nand Flash免费样品申请

    创新NOR FlashSPI NAND Flash
    发表于 03-19 18:02 2958次阅读

    创新推出国内首款2Gb SPI NOR Flash产品

    中国北京(2020 年7月3日) — 业界领先的半导体器件供应商创新 GigaDevice(股票代码 603986)今日宣布,隆重推出国内首款容量高达 2Gb、高性能 SPI
    发表于 07-03 16:24 1096次阅读

    STM32Cube-18】使用硬件QSPI读写SPI Flash(W25Q64

    本篇详细的记录了如何使用STM32CubeMX配置STM32L431RCT6的硬件QSPI外设与 SPI Flash 通信(W25Q64)。
    发表于 12-01 21:06 14次下载
    【<b class='flag-5'>STM32</b>Cube-18】使用硬件QSPI读写<b class='flag-5'>SPI</b> <b class='flag-5'>Flash</b>(W<b class='flag-5'>25Q64</b>)

    STM32CubeIDE XiP 和 BootROM介绍, XiP外部内存QSPI FLASH执行用户代码

    STM32CubeIDE XiP 和 BootROM介绍, XiP外部内存QSPI FLASH执行用户代码
    发表于 12-02 09:21 14次下载
    <b class='flag-5'>STM32CubeIDE</b> XiP 和 BootROM介绍, XiP外部内存QSPI <b class='flag-5'>FLASH</b>执行用户代码

    STM32单片机基础18——使用硬件QSPI读写SPI Flash(W25Q64

    本篇详细的记录了如何使用STM32CubeMX配置STM32L431RCT6的硬件QSPI外设与 SPI Flash 通信(W25Q64)。
    发表于 12-02 10:21 19次下载
    <b class='flag-5'>STM32</b>单片机基础18——使用硬件QSPI读写<b class='flag-5'>SPI</b> <b class='flag-5'>Flash</b>(W<b class='flag-5'>25Q64</b>)

    创新推出GD25WDxxK6 SPI NOR Flash产品系列

    创新今天宣布,推出GD25WDxxK6 SPI NOR
    的头像 发表于 07-20 15:10 1251次阅读

    创新推出1.2V超低功耗SPI NOR Flash产品GD25UF系列

    创新今日宣布,推出突破性的1.2V超低功耗SPI NOR Flash产品——
    的头像 发表于 08-19 17:22 1468次阅读

    创新:基于GD SPI NOR Flash的TWS耳机方案

    新的变化:需要更高品质和稳定性;容量不断提升;功耗和尺寸不断降低。 方案优势 可提供更全面的全球化服务; 具有业内最全的NOR Flash产品系列; 针对低功耗应用,推出了GD25LE/GD2
    发表于 02-07 12:00 1143次阅读
    <b class='flag-5'>兆</b><b class='flag-5'>易</b><b class='flag-5'>创新</b>:基于<b class='flag-5'>GD</b> <b class='flag-5'>SPI</b> <b class='flag-5'>NOR</b> <b class='flag-5'>Flash</b>的TWS耳机方案

    创新存储产品全球累计出货量已达1亿颗

    创新自2015年开始布局汽车电子领域,并在2019年和2022年陆续完成了GD25/55 SPI N
    发表于 04-12 14:47 369次阅读

    GD32F303固件库开发(16)----移植创新SPI Nor FlashGD25Q64Flash

    省空间,提供方便,正是出于这种简单易用的特性,越来越多的芯片集成了这种通信协议,比如 EEPROM,FLASH,实时时钟,AD转换器。 W25Q64 是一款SPI接口的Flash芯片
    的头像 发表于 07-26 16:14 1717次阅读
    <b class='flag-5'>GD</b>32F303固件库开发(16)----<b class='flag-5'>移植</b><b class='flag-5'>兆</b><b class='flag-5'>易</b><b class='flag-5'>创新</b><b class='flag-5'>SPI</b> <b class='flag-5'>Nor</b> <b class='flag-5'>Flash</b><b class='flag-5'>之</b><b class='flag-5'>GD25Q64Flash</b>

    STM32CUBEMX开发GD32F303(16)----移植创新SPI Nor FlashGD25Q64Flash

    SPI是串行外设接口(Serial Peripheral Interface)的缩写,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节
    的头像 发表于 07-27 09:10 1906次阅读
    <b class='flag-5'>STM32</b>CUBEMX开发<b class='flag-5'>GD</b>32F303(16)----<b class='flag-5'>移植</b><b class='flag-5'>兆</b><b class='flag-5'>易</b><b class='flag-5'>创新</b><b class='flag-5'>SPI</b> <b class='flag-5'>Nor</b> <b class='flag-5'>Flash</b><b class='flag-5'>之</b><b class='flag-5'>GD25Q64Flash</b>

    STM32CubeIDE实用技巧仿真带外扩FLASH的工程

    电子发烧友网站提供《STM32CubeIDE实用技巧仿真带外扩FLASH的工程.pdf》资料免费下载
    发表于 09-19 16:55 7次下载
    <b class='flag-5'>STM32CubeIDE</b>实用技巧<b class='flag-5'>之</b>仿真带外扩<b class='flag-5'>FLASH</b>的工程