0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

通用缓存引擎cachelib介绍

SSDFans 来源:SSDFans 2023-07-27 09:02 次阅读

背景

网络服务几乎在系统架构的每一层都依赖于缓存。大型网络服务依靠缓存系统来实现高性能和高效率。例如,在Facebook,CDN缓存为70%的网络请求提供服务,将延迟降低了一个或多个数量级。一台缓存服务器可以取代几十台后端数据库服务器,实现20倍的吞吐量和超过80%的命中率。通常,每个缓存都是由一个不同的团队独立实现和维护的,并且对其功能高度专业化。在Facebook,各种各样的缓存系统构成了系统架构的一个组成部分。Facebook的架构包括CDN缓存、键值应用缓存、社交图谱缓存和媒体缓存(图1)。缓存在亚马逊、Twitter、Reddit以及其他许多大型网络服务中扮演着类似的角色。然而,每个团队独立实现和维护的缓存系统存在重复的逻辑和功能,忽略了不同缓存系统共同面临的困难挑战,大大增加了部署、维护和扩展每个缓存所需的整体努力。

问题

1. 多种缓存系统的冗余

Facebook的每个缓存系统都是单独实现的。例如,如图1所示,Facebook分别设计了CDN缓存、键值缓存、社交图谱缓存、存储缓存、数据库缓存,以及其他许多缓存。这些高度专业化的系统都需要一个高度专业化的缓存,以实现复杂的一致性协议,利用自定义的数据结构,并针对所需的硬件平台进行优化。尽管这些缓存系统服务于不同的工作负载,需要不同的功能,但它们在设计和部署方面有许多共同的挑战。所有这些系统每秒都要处理数以百万计的查询,缓存工作集大到需要同时使用闪存和DRAM进行缓存,并且必须容忍因应用程序更新而频繁重启,这在Facebook的生产环境中很常见。随着Facebook的缓存系统数量的增加,为每个系统维持独立的缓存实现变得难以维持。通过重复解决相同的工程难题,团队重复了彼此的努力,产生了多余的代码。此外,维护独立的缓存系统也阻碍了系统之间分享性能优化带来的效率提升。

3f43fb3a-2c17-11ee-a368-dac502259ad0.png

图1 缓存类型

2. DRAM开销

随着传统的动态随机存取存储器 (DRAM) 缓存变得更加昂贵并且需要更多的能力来扩展。在大型服务器的场景下,全部采用DRAM作为缓存介质是不现实的,这将会造成巨大的成本开销。像 Facebook 这样的公司正在探索硬件选择,例如非易失性存储器 (NVM) 驱动器来增强他们的缓存系统。这种 DRAM 和 NVM 混合模型向前迈进了一步,但需要创新的缓存设计来利用混合缓存的全部潜力。

探索

1. 缓存数据集分布(冷热)

工作负载的流行度分布衡量的是每个键在某个时间范围内的取样跟踪的频率。这些频率表明系统中不同对象的相对受欢迎程度。之前对CDN和网络工作负载的测量表明,高度倾斜的Zipf分布是一种常见的流行分布。在Zipf分布中,"最受欢迎的20%的对象占了80%的请求"。图2显示了Facebook四个工作负载的对数尺度的流行分布。在这个尺度上,Zipf分布将是一条具有负斜率(-α)的直线。Lookaside是四个系统中唯一一个流行度分布为Zipfian的系统,α接近于1。Storage的分布在分布的头部更平坦,尽管尾部遵循Zipf分布。此外,尽管是Zip-fian分布,SocialGraph和CDN的分布分别表现为α=0.55和α=0.7。较低的α意味着明显较高比例的请求进入流行分布的尾部,这导致了更大的工作集。

3f74f85c-2c17-11ee-a368-dac502259ad0.png

图2 数据集流行度分布

2. 缓存数据集分布流失(冷热变化)

流失指的是由于新keys的引入和现有keys的流行程度随着时间的推移而产生的工作集的变化。流行的YCSB工作负载生成器假设没有流失,即每个密钥在整个基准期间保持同样的流行。这个基准和无流失假设被广泛用于系统论文的评估中。

3f9e7a06-2c17-11ee-a368-dac502259ad0.png

图3 流失程度

在Facebook的生产工作负载中体现出有很高程度的流失率。如果一个对象属于收到最多请求的10%的对象,我们就定义它是受欢迎的。图3显示了流行对象的集合如何随时间变化。例如,x=3处的蓝条显示了一个3小时前很受欢迎的对象仍然在前10%最多请求的对象中的概率。在所有的工作负载中,超过三分之二的热门对象在一小时后就跌出了前10%的位置。这种高流失率与使用哪个小时作为基线、不同的百分比(例如前25%)以及不同的时间粒度(例如,10分钟后,50%的热门对象不再受欢迎)无关。这种高流失率增加了时间定位的重要性,使缓存策略更难根据过去的访问模式来估计对象的受欢迎程度。

3. 缓存对象的粒度变化

除了受欢迎程度和流失率之外,对象的大小在缓存性能上也起着关键作用。图4显示了四个大型用例的对象大小分布。对于Storage和CDN,64KB和128KB的小块非常常见,这是将大对象分成小块的结果。对于Lookaside和SocialGraph,对象的大小跨越了七个数量级。

3fbff5e6-2c17-11ee-a368-dac502259ad0.png

图4 缓存对象粒度分布

4.急促访问

Facebook的工作负载流量是相当突发性的。图5显示了与泊松到达序列相比的实际请求到达率,这通常是在系统评估中假设的。图5显示,实际到达率的变化比Poisson暗示的要大得多。这对CDN来说尤其明显,它在相当稳定的请求率之上有急剧的流量爆发。多变的到达率使得缓存系统很难有足够的资源来维持负载高峰期的低延迟。

3fdc87ba-2c17-11ee-a368-dac502259ad0.png

图5 请求数量分布

方法和设计

1. 混合式缓存架构

相对来说这些东西需要写很多相同的缓存逻辑:换出策略,内存使用,处理 empty cache 等,所以 Facebook 造了一套通用的 CacheLib,用来节省团队造轮子的功夫。同时,很重要的一点是对于 Flash 的使用。用 SSD/Flash 当缓存,相对来说能够提供较低的成本,和可以接受的性能。相对 DRAM,机器一般会提供更大的盘,同时,SSD 也会提供更低的成本和更可接受的性能。这套功能在 CacheLib 中叫做 HybridCache,CacheLib 允许指定存储设备。CacheLib 对外提供的是 byte-addressable 的对象和 cache。它提供了一套线程安全的 api,来处理对应的逻辑:

3fefd0fe-2c17-11ee-a368-dac502259ad0.png

图6 API

此外,CacheLib 还给自定义的 Serialize/Deserialize 定义了接口,以便用户塞一些自定义结构体。

2.小对象缓存优化 (Small Object Cache)

SOC存储很多小对象,如果像LOC一样存储它们的索引,系统整个DRAM开销会非常大。所以SOC使用了一个近似的索引来实现对应的逻辑。如图7所示,SOC 把小对象划分成很多 sets,每个包含一个4kB page,按照FIFO存储对象。每组有一个8 bytes的Bloom Filter。这里把key查一下Bloom Filter,如果不存在则返回不存在,否则读取整个Page并顺序扫描。

40100360-2c17-11ee-a368-dac502259ad0.png

图7 小对象存储示意图

3. 大对象缓存优化 (Large Object Cache)

LOC 存储的都是 2kB 以上的对象。作者认为,这些大对象让用户能够在内存中放置这些对象的 Index。具体的对象按照 4kb 的大小对齐。论文用了 4 bytes 的大小定位这部分的数据:4 bytes最大能表示232个数据,可以放 16T的数据了。

LOC 的内存索引存储,LOC 会主动把 SSD 划分成不同的区域,根据这个来判断大小。然后LOC对象的地址会对齐4kB,这大概是一个SSD Page的大小,这样能够保证一个 SSD Page 不会存储过多的对象;同时地址对齐 4kB,减小地址对象的开销。如果对象很大,那么它会连续跨多个页,需要把他们都读起来。如果一个cache read读取有一个相同的hash key,这里会把Flash中的元数据读起来。这里在元数据上需要存储对应的key。然后把这个key跟用户请求的真实 key 比较,判断具体是否命中缓存。

这里还有一个 Erase 相关的优化。LOC 的 Erase 是以 Block 为单位的,它默认 16MB,但是是可配置的。这实际上相当于 抹去 SSD 的 Block,通过这种方式来增加写的顺序写。如果淘汰出的对象是一个比较热的对象,可能会重新加入 cache 中。

实验结果

实验性能对比包含三个方面,分别为缓存命中率、吞吐量和暖启动。

缓存命中率和吞吐量性能:图12显示了8到144GB的缓存规模和1亿个对象的典型工作集的命中率和吞吐量。Memcached和CacheLib实现了相似的命中率,Memcached在小的缓存大小时略高,在大的缓存大小时略低。在所有的缓存大小中,CacheLib实现了比Memcached更高的吞吐量,每秒钟处理的请求比Memcached多60%。

40530b4c-2c17-11ee-a368-dac502259ad0.png

图8 命中率和吞吐量实验结果图

小对象缓存性能:图9显示,CacheLib对小对象的明确处理为Flash缓存提供了比NGINX和ATS更大的优势。当对象的大小变大时,这种优势就会减弱。最终,对象的大小变得足够大,以至于这三个系统都变成了网络约束,其吞吐量急剧下降。

406b6a02-2c17-11ee-a368-dac502259ad0.png

图9 小对象吞吐量实验结果

暖启动:图10显示了L1和L2 SocialGraph缓存重启时的命中率,而没有执行暖重启。在没有启用这个功能的情况下,缓存重启会导致命中率下降,然后慢慢恢复正常。这在二级混合缓存中尤其具有破坏性,因为大容量的缓存可能需要几天时间来 "热身"。这样的命中率下降可以转化为后端系统的暂时过载,因为后端系统假定有相对稳定的到达率。

408bc9dc-2c17-11ee-a368-dac502259ad0.png

图10 暖启动实验结果

总结

Cachelib的出现避免了缓存系统重复造轮子的现象,降低了系统的冗余程度和开发维护成本。同时cachelib设计了混合式缓存架构,使用性价比高的SSD进行混合式缓存,使得缓存系统的成本降低同时提升性能。与传统的内存作为缓存层相比,cachelib考虑到闪存的特性,进行了小对象缓存优化,并且在性能上有很大改进。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 驱动器
    +关注

    关注

    52

    文章

    8242

    浏览量

    146415
  • DRAM芯片
    +关注

    关注

    1

    文章

    84

    浏览量

    18019
  • 缓存器
    +关注

    关注

    0

    文章

    63

    浏览量

    11666
  • CDN网络
    +关注

    关注

    0

    文章

    11

    浏览量

    6768
  • 随机存取存储器

    关注

    0

    文章

    44

    浏览量

    8981

原文标题:通用缓存引擎cachelib

文章出处:【微信号:SSDFans,微信公众号:SSDFans】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    阿里巴巴开源的通用缓存访问框架JetCache介绍

    摘要: JetCache是由阿里巴巴开源的通用缓存访问框架,如果你对Spring Cache很熟悉的话,请一定花一点时间了解一下JetCache,它更好用。JetCache可以做类似Spring
    发表于 04-24 16:09

    介绍AWTK

    ZLG开源GUI引擎AWTK发布1.1版本一、介绍AWTK全称Toolkit AnyWhere,是ZLG开发的开源GUI引擎,旨在为嵌入式系统、WEB、各种小程序、手机和PC打造的通用
    发表于 08-20 08:18

    请问AzureRTOS ThreadX/NetXDuo在通用字节池上缓存怎么样

    。到目前为止没问题,我已经将 regon 设置为“设备”,这样就无法缓存它们。现在在 AzureRTOS NetXDuo 上似乎不需要 Rx_Buff,因为它是由 AzureRTOS 的通用字节池分配
    发表于 12-19 06:29

    高速缓存Cache介绍

    什么是高速缓存?• 高速存储器块,包含地址信息(通常称作TAG)和相关联的数据。• 目的是提高对存储器的平均访问速度• 高速缓存的应用基于下面两个程序的局部性 :• 空间局部性:如果一个存储器的位置
    发表于 09-07 08:22

    Mybatis缓存之一级缓存

    本文主要讲mybatis的一级缓存,一级缓存是SqlSession级别的缓存。mybatis提供查询缓存,用于减轻数据压力,提高数据库性能。mybaits提供一级
    发表于 11-27 20:44 1228次阅读
    Mybatis<b class='flag-5'>缓存</b>之一级<b class='flag-5'>缓存</b>

    渲染中的帧缓存和深度缓存

    渲染涉及大量的缓存,这里缓存只是一个简单的存有像素数据的矩形内存块,最重要缓存是帧缓存和深度缓存
    的头像 发表于 05-14 11:44 6348次阅读
    渲染中的帧<b class='flag-5'>缓存</b>和深度<b class='flag-5'>缓存</b>

    硬盘缓存有什么用

    硬盘缓存一般指高速缓冲存储器。本视频主要详细介绍了硬盘缓存有什么用,分别有预读取、是对写入动作进行缓存以及是临时存储最近访问过的数据。
    的头像 发表于 11-10 10:31 2.3w次阅读

    缓存的基本原理 缓存的分类

    缓存的主要手段有:浏览器缓存、CDN、反向代理、本地缓存、分布式缓存、数据库缓存
    发表于 06-13 12:04 4754次阅读

    基于鸿蒙适配移植的开源视频缓存引擎项目案例

    项目介绍 项目名称:开源视频缓存引擎项目 所属系列:鸿蒙的第三方组件适配移植 功能:支持自动缓存视频并在断网状态下播放视频 项目移植状态:完成 调用差异:无 开发版本:sdk5,Dev
    发表于 04-06 10:27 2次下载

    CacheLib可插入的进程内缓存引擎

    ./oschina_soft/CacheLib.zip
    发表于 06-16 09:08 1次下载
    <b class='flag-5'>CacheLib</b>可插入的进程内<b class='flag-5'>缓存</b><b class='flag-5'>引擎</b>

    使用Matlab实现了一个通用无源网络仿真引擎

    本节主要是对通用无源电路网络的原理图构建和电路仿真。主要介绍了电路方程的改进节点法和原理图构建中所使用的图论相关分析方法。最后结合实际滤波器电路,使用Matlab实现了一个通用无源网络仿真引擎
    发表于 02-20 14:32 984次阅读
    使用Matlab实现了一个<b class='flag-5'>通用</b>无源网络仿真<b class='flag-5'>引擎</b>

    如何在SpringBoot中解决Redis的缓存穿透等问题

    今天给大家介绍一下如何在SpringBoot中解决Redis的缓存穿透、缓存击穿、缓存雪崩的问题。
    的头像 发表于 04-28 11:35 731次阅读

    Caffeine教程缓存介绍

    缓存(Cache)在代码世界中无处不在。从底层的CPU多级缓存,到客户端的页面缓存,处处都存在着缓存的身影。缓存从本质上来说,是一种空间换时
    的头像 发表于 05-22 11:01 964次阅读
    Caffeine教程<b class='flag-5'>缓存</b><b class='flag-5'>介绍</b>

    聊聊本地缓存和分布式缓存

    本地缓存 :应用中的缓存组件,缓存组件和应用在同一进程中,缓存的读写非常快,没有网络开销。但各应用或集群的各节点都需要维护自己的单独缓存,无
    发表于 06-11 15:12 837次阅读
    聊聊本地<b class='flag-5'>缓存</b>和分布式<b class='flag-5'>缓存</b>

    缓存之美——如何选择合适的本地缓存

    Guava cache是Google开发的Guava工具包中一套完善的JVM本地缓存框架,底层实现的数据结构类似于ConcurrentHashMap,但是进行了更多的能力拓展,包括缓存过期时间设置、缓存容量设置、多种淘汰策略、
    的头像 发表于 11-17 14:24 308次阅读
    <b class='flag-5'>缓存</b>之美——如何选择合适的本地<b class='flag-5'>缓存</b>?