0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

陆基条件下典型地物和伪装光谱影响因子分析

莱森光学 来源:莱森光学 作者:莱森光学 2023-07-28 16:35 次阅读

引言

现代高科技战争伴随着侦察技术与精确制导技术的发展,目标“发现”即意味着被摧毁,对目标进行伪装已经成为战场目标降低自身被发现概率、提高战场生存能力的首选方式。经过30余年的发展,高光谱成像技术已经成为对抗军事伪装的有效手段。目前已知的伪装手段还不能有效地欺骗高光谱侦察方式。

当前,利用高光谱成像进行目标分类和探测的主要方式是卫星遥感和高空航空侦察,在已知的这两种探测方式中,侦察时间大致相同,因此入射光的方向基本一致;在卫星遥感和高空航空侦察时,一方面侦察时间随机,太阳的入射角度时刻变化;另一方面侦察的方向任意、高度在地面或者近地位置(无人机搭载侦察),探测方向相对变化无穷。侦察过程受物体表面双向反射分布函数(BRDF)系数影响凸显。陆基条件下高光谱成像目标往往分布在山地、平原等地区,而遥感探测对于目标的观测方式往往是垂直方向收集数据,对于陆基条件下的高光谱成像而言,探测角度、太阳高度角、探测器与光源的相对方位角都会对目标探测产生影响,导致同种或者相似的地物产生不同的光谱曲线,而这种反射率的变化将会对目标探测带来影响。

对于地物的BRDF的测量,前人已经做了很多研究,赵春燕为了提升光学卫星遥感器的定标频次,提出了一种基于场地高光谱BRDF模型的高频次绝对定标方法。中国科学院安徽光学精密机械研究所在敦煌辐射校正场开展了针对地表反射率在遥感器视角方向校正的BRDF特性分析,测量了整个场地的BRDF值并建立了模型,分析了场地对不同波段的方向特性。有报道针对坡地植物的反射比影响因子进行了分析,结果证明了探测天顶角以及坡度、坡向对植被高光谱遥感均有影响。Wang针对黄铜表面的反射特性做了一系列实验,建立了BRDF模型并进行了分析。有学者也针对其他材料进行了一系列研究。

目前,尚无专门针对陆基应用情况下,地物及伪装的光谱曲线是否仍旧保持“同物同谱”、“异物异谱”的特性进行研究。有必要对高光谱图像中的同一目标光谱特征受观测几何、太阳入射角度、探测器探测角以及探测器与光源方位角的影响,确定地物光谱在不同观测条件下是否存在光谱不确定性,即“同物异谱、异物同谱”现象;如果存在,需对影响的大小及规律进行总结,并相应对后续目标探测算法提出改进意见。特别要加强对作战区域背景光谱特性的研究,对不同地域典型地物的光谱要细化分析,以便于更精确地确定特定背景的光谱参数,以建立不同地区的光谱特性参数数据库。

挑选了北方地区常见的绿色植被、迷彩雨衣以及两种不同的迷彩伪装板作为研究对象,通过实验从多个方向采集了各种材料的光谱曲线,分析了不同探测角度、太阳入射角以及地物方位角对陆基条件下高光谱成像的影响,通过建立BRDF模型,分析了不同伪装材料的不同散射特性,为陆基条件下高光谱成像实时伪装识别提供了研究基础。

实验部分

2.1 研究方法

自然界的大部分物体都属于非朗伯体,一般使用BRDF模型对地物的各向异性进行描述。其中BRDF的定义为反射幅亮度和入射幅亮度之比,其计算表达式为式(1)

wKgaomTDfceAFvjyAAAyIO3tvZE803.png

式(1)中,θi,φi;θr,φr表示入射太阳光的方位角、天顶角以及反射光线的方位角、天顶角。dEi表示光源在入射点附近面元上的入射辐照度,dLr为相应的反射辐亮度。BRDF半经验核驱动模型在不同的领域都得到了广泛的应用,其中Ross Thick-LiSparseR模型具有显著的代表性,其表达式如式(2)所示

wKgZomTDfceAFx8gAAAn9szWB1E508.png

该模型将二向性反射分解为了各同向性反射、体散射和几何反射三部分的权重。其中R是二向反射率,θ是光线照射天顶角,是观测天顶角,σ是相对方位角。Kvol和Kgeo分别为体散射核和几何光学核。三个常系数只与波长有关,分别表示均匀散射、体散射和几何光学散射所占比例。

在模型中,由于三个常系数仅与波长有关,而体散射核Kvol和几何光学核Kgeo可以通过探测角、方位角以及太阳高度角进行计算,拍摄的多组数据进行线性拟合可以得到三个常系数的值,进而建立BRDF模型,理论上可以求出在任意太阳高度角、探测角以及方位角条件下目标的反射率。

2.2实验设计

实验示意图如图1所示(a)所示,其中A到D依次为浅色伪装板、深色伪装板、漫反射白板、迷彩雨衣。实验过程中获得的高光谱图像灰度图如图1(b)所示。

wKgaomTDfceABwCiAAMfe7jfA54397.png

图1拍摄场景示意图

实验中,设定对目标进行前向观测时方位角为正,后向观测时方位角为负。由于高光谱成像仪观测距离较近,应根据天气条件以及成像角度及时的调整高光谱成像仪的光圈、增益,以避免出现探测器饱和的现象。实验的迷彩涂层样板为浅绿色迷彩涂层板与深绿色迷彩涂层板,均由军内某研究所提供,该研究所在研究迷彩涂层方面具有很高的权威性,提供的迷彩涂层样板与现役装备基本一致,通过研究伪装板的光谱曲线可以合成目前装备的涂层光谱。同时选取经过计量标定的聚四氟乙烯板(PTFE)作为实验参考板,用来对高光谱仪进行辐射定标,使用PTFE进行辐射定标的公式见式(3)

wKgZomTDfciAW2BNAAAXI5cLCBs773.png

式(3)中,θ为白板的漫反射系数,θ=0.989。

结果与讨论

3.1 数据分析

3.1.1太阳高度角对地物光谱曲线的影响

使用成像光谱仪对研究目标以及白板同时进行拍摄,时间为上午9点,每隔半小时拍摄一次,共拍摄5次,太阳高度角为43°时的几何示意图如图2所示,探测天顶角为27°,地面的坡度大致为10°左右。

wKgaomTDfciAGaGMAAEUfL-YPMc006.png

图2 实验的几何示意图(太阳高度角为43°)

如图3所示,从实验结果中可以看出,四种研究对象的光谱曲线与太阳高度角的关系区别较大。在不同的太阳高度角光照射下,如图3(a)所示,绿色植被的光谱发生了变化。在449~689nm之间,绿色植被的光谱基本相似,但波长大于689nm,绿色植被的光谱曲线随着太阳高度角的变化较为明显,但其变化并非线性变化,基本规律是随着太阳高度角的升高反射比先升高,在43°时达到最大,随着太阳高度角进一步增大,绿色植被的反射比反而下降。迷彩雨衣的光谱曲线与其他材料较为不同[如图3(b)所示],基本随着太阳高度角的增大,迷彩雨衣的光谱整体发生了平移,在太阳高度角为50°左右时,整个波段的光谱强度都达到了最大值,并在太阳高度角进一步增大时,迷彩雨衣的光谱曲线强度下降。而两种绿色伪装板的光谱由于图中像素较少[如图3(c,d)所示],光谱曲线受到噪声的影响相比其他两种材料较明显,迷彩伪装板在可见光波段光谱曲线受太阳高度角变化的影响不很明显,但在近红外波段显现出了与绿色植被相同的变化规律,随着太阳高度角的增大,浅色伪装板的近红外波段光谱逐渐上移后下降,在50°左右达到峰值,深绿色则在54°时反射比达到最大。

wKgZomTDfciAPT4dAAJbVPljWUs616.png

图3 不同太阳高度角下四种研究对象的光谱曲图3不同太阳高度角下四种研究对象的光谱曲线(a):绿地植被的光谱曲线;(b):迷彩雨衣的光谱曲线;(c):浅绿色伪装板的光谱曲线;(d):深绿色伪装板的光谱曲线

当探测角以及探测器与太阳的方位角不变时,之所以会发生这种变化,主要是因为实验研究的三种物体均为非朗伯体,存在二向性反射。有研究曾经发现植物的叶片在主平面入射角等于探测角时反射比值最大,其他方向逐渐减小。实验的结果基本上符合该研究提出的理论,从实验中可以看出,陆基条件下绿地植被的光谱曲线在可见光波段的反射比变化不比其在近红外波段更敏感,并且随着太阳高度角的增大,可见光和近红外波段的植被反射比并不呈现线性变化,在近红外波段的反射比受到太阳高度角的影响变化较大。实验的误差可能是由于植物叶片表面的灰尘以及粗糙水平不一致,而且校园内的植被并非天然生长而成,而是人工修建而成,因此实验结果会与理论结果产生一定的误差。对于伪装板,陆基条件下的高光谱特性相对于绿地植被较为不同,由于在场景中伪装板的像素较少,因此其光谱受到噪声的影响较大,反射比曲线比较杂乱,在红外波段的反射比最大值出现在50°。对于迷彩雨衣,其反射比曲线基本上随着太阳高度角的变化在整个波长范围内发生平移,其基本规律与迷彩伪装板类似,在33°~50°之间,光谱反射比逐渐增大,随着太阳高度角进一步增大,光谱反射比反而减小,导致迷彩雨衣和伪装板与绿地植被的最大反射比对应的太阳高度角不同的原因可能是人造伪装物的表面比较平整,导致其光谱反射比在50°附近达到最大。

3.1.2探测器与光源方位角对光谱曲线的影响

为了研究探测器与光源的方位角对光谱曲线的影响,在上午9点对伪装板和迷彩服以及绿地进行拍摄,实验中,保持34°的探测角分别在12°,49°,87°和152°相对方位角分别对场景进行拍摄,实验结果分别如图4(a—d)所示。

wKgaomTDfciAa4l4AAJC3NOkl1E930.png

图4不同方位角下三种研究对象的光谱曲线(a):绿地植被的光谱曲线;(b):迷彩雨衣的光谱曲线;(c):浅绿色伪装板的光谱曲线;(d):深绿色伪装板的光谱曲线

实验结果可以看出,四种研究对象光谱曲线随着方位角变化的基本规律相同,在相对方位角从12°到157°的过程中,研究对象光谱曲线都是先下降后上升,在不同波长呈现的规律具有差异性,如图4(a)所示,绿色植被的光谱曲线比较平滑,在449~601nm以及701~801nm之间的光谱受方位角的影响较大,601~701nm之间的光谱变化则比较小,整体上呈现“两头翘,中间平”的规律,迷彩雨衣和迷彩伪装板的光谱则没有明显的规律,如图4(b,c)所示。三种研究对象的光谱随着方位角的增大光谱反射比曲线都是先增大后减小,其光谱值在接近90°左右达到最低值,得出这样的结论是因为当探测光线和入射光线在同一平面内时,以此平面为对称面,理论上在对称面上,探测天顶角等于入射天顶角时反射率最高,由对称面两侧偏离探测角,反射率随着方位角的增大呈现降低的趋势,但过了90°之后,随着接近对称面,反射率又进一步提高。实验中,之所以152°的光谱反射比比12°时的反射比更大,主要是因为后向观测时探测器收集的光线较多,同等条件下反射比要比前向观测更大。

3.1.3探测角度对光谱曲线的影响

探测角同样也是影响地物光谱曲线的重要影响因素,使用高光谱仪对浅色伪装板、迷彩雨衣以及绿地植被从后向40°到正向50°分别进行测量并记录光谱值,在室内进行实验,卤钨灯是填充气体内部具有部分卤族元素或者卤化物的充气白炽灯,发出的光线在近红外和白光波段与太阳光光谱比较近似,因此本实验使用卤钨灯模拟光谱进行实验,光谱的入射天顶角为40°,分别从后向40°到正向50°之间每隔10°对三种研究对象成像,选取449,649,725和801nm四个波段进行分析,实验结果如图5(a,b,c)所示。从实验图中可以看出,三种研究对象的光谱与不同探测角的关系呈现出相同的规律,在白光和近红外波段中,探测角对地物光谱的影响较小,研究对象的光谱变化不是很明显,但在实验中发现,三种研究对象均在某个探测角度反射比出现极大值,绿地植被在后向30°时反射比达到最高,伪装板在后向10°左右时反射比达到最高,迷彩雨衣在后向20°左右反射比达到最大,其原因主要是三种材料的粗糙度从小到大顺序依次为伪装板、迷彩雨衣和绿地植被,粗糙度越大,探测角的“热点”就越靠近垂直方向,并且伪装板与迷彩雨衣的光谱吸收率相对绿地植被要高,这也造成了偏离垂直方向光谱反射比下降。

wKgZomTDfcmAVz_fAALmyOgQUgs482.png

图5不同探测角下三种对象的光谱曲线(a):绿地植被的光谱曲线;(b):浅色伪装板的光谱曲线;(c):迷彩雨衣的光谱曲线

3.2BRDF模型分析

为了深入分析典型绿地植被与伪装材料的反射特性,使用采集到的多张影像分别计算Kvol和Kgeo通过同一波段数据进行线性拟合求出fiso,fgeo和fvol三个系数的值,通过分析不同材料的三种不同系数的值,可以分析出不同材料在不同波长的反射特性。绿地植被与人造伪装材料最主要的区别就是绿地植被具有明显的红边效应,因此主要分析近红外波段(725~801nm)之间的地物反射特性,两种材料的模型参数如图6所示。

wKgaomTDfcmAYeE8AABq-ynAuHw028.png

wKgZomTDfcmAERnWAABm2asCJbM178.png

图6近红外波段绿地植被和迷彩伪装板的BRDF参数(a):绿地植被;(b):迷彩伪装板

从图中模型分析的结果可以看出,在近红外波段,两者的散射特性存在明显的差别。在近红外波段范围内,伪装板和绿色植被的模型参数区别很大,可以认为fiso是当太阳天顶角为0°时垂直观测的反射率。fvol代表散射类型,如果其值大于零则代表后向散射占主导,反之则为前向散射为主,随着波长增大,绿地植被前向散射越来越强,而伪装板在725~760nm时都为后向散射占主导,760~801nm时为前向散射占主导。

结论

挑选了绿地植被和三种人造伪装材料,通过不同的实验,细致地分析了太阳高度角、方位角以及探测角对陆基条件下高光谱成像的影响。从实验结果中可以看出,虽然三种材料的反射特性存在不同,但在不同的太阳高度角、方位角以及探测角整体上呈现相同的规律。对于太阳高度角来说,当探测角一定时,陆基条件下的地物光谱一般随着太阳高度角的增大升高先升高再降低,其中,人造伪装物的光谱随着太阳高度角的变化整个光谱曲线都发生变化,反射比曲线呈现出平移的规律,而绿地植被在白光波段变化不是很明显,在近红外波段的变化很明显,随着太阳高度角的增大先升高后减低;对于方位角而言,三种材料随着方位角的增大光谱反射一般先升高后降低,同时后向观测时的光谱反射比一般比正向观测反射比高;对于探测角进行的实验,发现三种材料的光谱与探测角的关系并不是很大,但三种材料在不同的探测角度上出现“热点”现象。对绿地植被和迷彩伪装板的BRDF参数进行了分析,分析其BRDF模型的不同特点。研究结论可以作为下一步高光谱图像分类的新依据,并为陆基条件下的高光谱图像分析奠定了基础。

推荐

便携式地物光谱仪iSpecField-NIR/WNIR

专门用于野外遥感测量、土壤环境、矿物地质勘探等领域的最新明星产品,由于其操作灵活、便携方便、光谱测试速度快、光谱数据准确是一款真正意义上便携式地物光谱仪。

wKgaomTDfcqAXSaPAACIEhUKZfU42.jpeg

无人机机载高光谱成像系统iSpecHyper-VM100

一款基于小型多旋翼无人机机载高光谱成像系统,该系统由高光谱成像相机、稳定云台、机载控制与数据采集模块、机载供电模块等部分组成。无人机机载高光谱成像系统通过独特的内置式或外部扫描和稳定控制,有效地解决了在微型无人机搭载推扫式高光谱照相机时,由于振动引起的图像质量较差的问题,并具备较高的光谱分辨率和良好的成像性能。

wKgZomTDfcqAQoQxAABJinx5T6w15.jpeg

便携式高光谱成像系统iSpecHyper-VS1000

专门用于公安刑侦、物证鉴定、医学医疗、精准农业、矿物地质勘探等领域的最新产品,主要优势具有体积小、帧率高、高光谱分辨率高、高像质等性价比特点采用了透射光栅内推扫原理高光谱成像,系统集成高性能数据采集与分析处理系统,高速USB3.0接口传输,全靶面高成像质量光学设计,物镜接口为标准C-Mount,可根据用户需求更换物镜。

wKgaomTDfcqAGB92AABMLluj9sU11.jpeg




审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 探测器
    +关注

    关注

    14

    文章

    2648

    浏览量

    73095
  • 光谱
    +关注

    关注

    4

    文章

    832

    浏览量

    35237
  • BRDF
    +关注

    关注

    0

    文章

    3

    浏览量

    6032
  • 地物光谱仪
    +关注

    关注

    0

    文章

    78

    浏览量

    3253
收藏 人收藏

    评论

    相关推荐

    基于因子分析设计心电信号去噪算法解析

    研究生导师给出了一个题目基于因子分析设计心电信号去噪算法,可是在大学课程中没有做过相关的设计,自己想了很久,一点思路也没有,希望能得到大家的帮助,有哪位做过相关设计,或者分享一相关设计的链接,给出
    发表于 08-05 07:00

    因子分析和支持向量机的信息系统风险评价

    因子分析和支持向量机的信息系统风险评价_伍浏阳
    发表于 01-03 17:41 0次下载

    基于因子分析和特征映射的耳语说话人识别

    基于因子分析和特征映射的耳语说话人识别_张庆芳
    发表于 01-07 16:24 0次下载

    地物光谱仪功能及所需的测量条件是什么

    的变化规律,表现为地物波谱随波长而变的特性,这些特性叫做地物光谱仪特性。地物光谱仪特征是遥感识别地物
    发表于 12-13 15:55 1279次阅读

    地物光谱仪有什么功能作用?

    如今,地物光谱分析仪在销售市场上有流行的机械设备。地物光谱分析仪自动控制发展趋势的创新发展,使地物光谱分
    发表于 10-11 15:09 1117次阅读
    <b class='flag-5'>地物</b><b class='flag-5'>光谱</b>仪有什么功能作用?

    地物光谱仪的特征及测量条件

    地物光谱仪的电磁波响应特性随电磁波长的变化而变化,称为地物光谱地物光谱仪是电磁辐射与
    的头像 发表于 12-16 09:51 1502次阅读

    浅析地物光谱仪的使用条件

    一、使用环境 1.地物光谱仪的使用环境应避免阳光直射,避免阵风和雨雪等恶劣天气,避免沙尘、烟尘、湿度大、温度过高或过低等情况。 2.地物光谱仪在使用时,应确保室内有良好的通风,以及良好
    的头像 发表于 02-03 09:31 834次阅读
    浅析<b class='flag-5'>地物</b><b class='flag-5'>光谱</b>仪的使用<b class='flag-5'>条件</b>

    地物光谱仪在地物分类中的应用

    地物光谱仪是一种利用光学技术来分析物体光谱的仪器,是一种高精度、高性能的光谱测量仪器,它可以用来测量物体特定波段的
    发表于 03-09 17:52 344次阅读
    <b class='flag-5'>地物</b><b class='flag-5'>光谱</b>仪在<b class='flag-5'>地物</b>分类中的应用

    地物光谱仪的应用概述

    地物光谱仪是一种利用光谱技术测量地物特性的仪器,可以对地物的反射特性以及其它特性进行测量和分析
    的头像 发表于 04-28 16:28 1700次阅读

    地物光谱仪测量中的温湿度影响-莱森光学

    引言 地物光谱仪在遥感领域的应用日益重要,可用于研究不同地物条件下可见和红外的光谱辐射特性,从而获得地表的
    的头像 发表于 05-08 15:47 1063次阅读
    <b class='flag-5'>地物</b><b class='flag-5'>光谱</b>仪测量中的温湿度影响-莱森光学

    地物光谱匹配模型研究

    遥感的目的是通过对图像的定性、定量分析,深入研究各种自然环境要素。由于组成成份的差异地物覆盖形成了可诊断的典型光谱反射特征,这成为地物
    的头像 发表于 07-07 14:38 543次阅读
    <b class='flag-5'>地物</b><b class='flag-5'>光谱</b>匹配模型研究

    地物光谱仪:地物的反射光谱地物波谱特性

    遥感波谱范围不断拓宽,空间、波谱和时间分辨率不断提高,遥感影像处理,地物识别和信息提取技术不断完善,遥感数据获取由多光谱,高光谱至超高光谱,信息挖掘由“粗糙”到“精细”,遥感
    的头像 发表于 08-22 15:49 969次阅读

    条件下典型地物伪装光谱影响因子分析1.0

    光谱成像技术已经成为对抗军事伪装的有效手段。目前已知的伪装手段还不能有效地欺骗高光谱侦察方式。 挑选了北方地区常见的绿色植被、迷彩雨衣以及两种不同的迷彩
    的头像 发表于 03-01 13:49 278次阅读
    <b class='flag-5'>陆</b><b class='flag-5'>基</b><b class='flag-5'>条件下</b><b class='flag-5'>典型</b><b class='flag-5'>地物</b>和<b class='flag-5'>伪装</b><b class='flag-5'>光谱</b>影响<b class='flag-5'>因子分析</b>1.0

    地物光谱仪在环境植物分析中的应用

    。 工作原理 地物光谱仪通过测量植物在不同波长的反射光谱分析其生理状态和健康状况。植物在不同波长范围内的反射特性不同,尤其是在可见光(V
    的头像 发表于 05-27 16:58 463次阅读
    <b class='flag-5'>地物</b><b class='flag-5'>光谱</b>仪在环境植物<b class='flag-5'>分析</b>中的应用

    地物光谱仪在土壤中油脂分析中的应用

    优势。 工作原理 地物光谱仪通过测量土壤样品在不同波长的反射光谱分析其成分。土壤中的油脂会在特定波段上表现出独特的
    的头像 发表于 05-28 11:38 453次阅读
    <b class='flag-5'>地物</b><b class='flag-5'>光谱</b>仪在土壤中油脂<b class='flag-5'>分析</b>中的应用