0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

两个好用到爆的Python模块 轻松解决烦恼的匹配问题

Android编程精选 来源:Android编程精选 2023-08-03 11:16 次阅读

在日常开发工作中,经常会遇到这样的一个问题:要对数据中的某个字段进行匹配,但这个字段有可能会有微小的差异。比如同样是招聘岗位的数据,里面省份一栏有的写“广西”,有的写“广西壮族自治区”,甚至还有写“广西省”……为此不得不增加许多代码来处理这些情况。

今天跟大家分享FuzzyWuzzy一个简单易用的模糊字符串匹配工具包。让你轻松解决烦恼的匹配问题!

前言

在处理数据的过程中,难免会遇到下面类似的场景,自己手里头获得的是简化版的数据字段,但是要比对的或者要合并的却是完整版的数据(有时候也会反过来)

最常见的一个例子就是:在进行地理可视化中,自己收集的数据只保留的缩写,比如北京,广西,新疆,西藏等,但是待匹配的字段数据却是北京市,广西壮族自治区,新疆维吾尔自治区,西藏自治区等,如下。

因此就需要有没有一种方式可以很快速便捷的直接进行对应字段的匹配并将结果单独生成一列,就可以用到FuzzyWuzzy库。

eb55a010-2d41-11ee-815d-dac502259ad0.png

FuzzyWuzzy库介绍

FuzzyWuzzy 是一个简单易用的模糊字符串匹配工具包。它依据 Levenshtein Distance 算法,计算两个序列之间的差异。

Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

这里使用的是Anaconda下的jupyter notebook编程环境,因此在Anaconda的命令行中输入一下指令进行第三方库安装。

1 fuzz模块

该模块下主要介绍四个函数(方法),分别为:简单匹配(Ratio)、非完全匹配(Partial Ratio)、忽略顺序匹配(Token Sort Ratio)和去重子集匹配(Token Set Ratio)

注意:如果直接导入这个模块的话,系统会提示warning,当然这不代表报错,程序依旧可以运行(使用的默认算法,执行速度较慢),可以按照系统的提示安装python-Levenshtein库进行辅助,这有利于提高计算的速度。

eb7224b0-2d41-11ee-815d-dac502259ad0.png

1.1 简单匹配(Ratio)

简单的了解一下就行,这个不怎么精确,也不常用

fuzz.ratio("河南省","河南省")

output

100

fuzz.ratio("河南","河南省")

output

80

1.2 非完全匹配(Partial Ratio)

尽量使用非完全匹配,精度较高

fuzz.partial_ratio("河南省","河南省")

output

100

fuzz.partial_ratio("河南","河南省")

output

100

1.3 忽略顺序匹配(Token Sort Ratio)

原理在于:以 空格 为分隔符,小写 化所有字母,无视空格外的其它标点符号

fuzz.ratio("西藏自治区","自治区西藏")

output

50

fuzz.ratio('IloveYOU','YOULOVEI')

output

30

fuzz.token_sort_ratio("西藏自治区","自治区西藏")

output

100

fuzz.token_sort_ratio('IloveYOU','YOULOVEI')

output

100

1.4 去重子集匹配(Token Set Ratio)

相当于比对之前有一个集合去重的过程,注意最后两个,可理解为该方法是在token_sort_ratio方法的基础上添加了集合去重的功能,下面三个匹配的都是倒序

fuzz.ratio("西藏西藏自治区","自治区西藏")

output

40
fuzz.token_sort_ratio("西藏西藏自治区","自治区西藏")

output

80
fuzz.token_set_ratio("西藏西藏自治区","自治区西藏")

output

100

fuzz这几个ratio()函数(方法)最后得到的结果都是数字,如果需要获得匹配度最高的字符串结果,还需要依旧自己的数据类型选择不同的函数,然后再进行结果提取,如果但看文本数据的匹配程度使用这种方式是可以量化的,但是对于我们要提取匹配的结果来说就不是很方便了,因此就有了process模块。

process模块

用于处理备选答案有限的情况,返回模糊匹配的字符串和相似度。

2.1 extract提取多条数据

类似于爬虫中select,返回的是列表,其中会包含很多匹配的数据

choices=["河南省","郑州市","湖北省","武汉市"]
process.extract("郑州",choices,limit=2)

output

[('郑州市',90),('河南省',0)]

extract之后的数据类型是列表,即使limit=1,最后还是列表,注意和下面extractOne的区别

2.2extractOne提取一条数据

如果要提取匹配度最大的结果,可以使用extractOne,注意这里返回的是 元组 类型, 还有就是匹配度最大的结果不一定是我们想要的数据,可以通过下面的示例和两个实战应用体会一下

process.extractOne("郑州",choices)

output

('郑州市',90)
process.extractOne("北京",choices)

output

('湖北省',45)

3. 实战应用

这里举两个实战应用的小例子,第一个是公司名称字段的模糊匹配,第二个是省市字段的模糊匹配

3.1 公司名称字段模糊匹配

数据及待匹配的数据样式如下:自己获取到的数据字段的名称很简洁,并不是公司的全称,因此需要进行两个字段的合并

eb7d1ece-2d41-11ee-815d-dac502259ad0.png

直接将代码封装为函数,主要是为了方便日后的调用,这里参数设置的比较详细,执行结果如下:

eb92f640-2d41-11ee-815d-dac502259ad0.png

3.1.1参数讲解

第一个参数df_1是自己获取的欲合并的左侧数据(这里是data变量);

第二个参数df_2是待匹配的欲合并的右侧数据(这里是company变量);

第三个参数key1是df_1中要处理的字段名称(这里是data变量里的‘公司名称’字段)

第四个参数key2是df_2中要匹配的字段名称(这里是company变量里的‘公司名称’字段)

第五个参数threshold是设定提取结果匹配度的标准。注意这里就是对extractOne方法的完善,提取到的最大匹配度的结果并不一定是我们需要的,所以需要设定一个阈值来评判,这个值就为90,只有是大于等于90,这个匹配结果我们才可以接受

第六个参数,默认参数就是只返回两个匹配成功的结果

返回值:为df_1添加‘matches’字段后的新的DataFrame数据

3.1.2 核心代码讲解

第一部分代码如下,可以参考上面讲解process.extract方法,这里就是直接使用,所以返回的结果m就是列表中嵌套元祖的数据格式,样式为: [(‘郑州市’, 90), (‘河南省’, 0)],因此第一次写入到’matches’字段中的数据也就是这种格式

注意,注意:元祖中的第一个是匹配成功的字符串,第二个就是设置的threshold参数比对的数字对象

s=df_2[key2].tolist()
m=df_1[key1].apply(lambdax:process.extract(x,s,limit=limit))
df_1['matches']=m

第二部分的核心代码如下,有了上面的梳理,明确了‘matches’字段中的数据类型,然后就是进行数据的提取了,需要处理的部分有两点需要注意的:

提取匹配成功的字符串,并对阈值小于90的数据填充空值

最后把数据添加到‘matches’字段

m2=df_1['matches'].apply(lambdax:[i[0]foriinxifi[1]>=threshold][0]iflen([i[0]foriinxifi[1]>=threshold])>0else'')
#要理解第一个‘matches’字段返回的数据类型是什么样子的,就不难理解这行代码了
#参考一下这个格式:[('郑州市', 90), ('河南省', 0)]
df_1['matches']=m2
returndf_1

3.2 省份字段模糊匹配

自己的数据和待匹配的数据背景介绍中已经有图片显示了,上面也已经封装了模糊匹配的函数,这里直接调用上面的函数,输入相应的参数即可,代码以及执行结果如下:

eba7ee4c-2d41-11ee-815d-dac502259ad0.png

数据处理完成,经过封装后的函数可以直接放在自己自定义的模块名文件下面,以后可以方便直接导入函数名即可,可以参考将自定义常用的一些函数封装成可以直接调用的模块方法。

4. 全部函数代码

#模糊匹配

deffuzzy_merge(df_1,df_2,key1,key2,threshold=90,limit=2):
"""
:paramdf_1:thelefttabletojoin
:paramdf_2:therighttabletojoin
:paramkey1:keycolumnofthelefttable
:paramkey2:keycolumnoftherighttable
:paramthreshold:howclosethematchesshouldbetoreturnamatch,basedonLevenshteindistance
:paramlimit:theamountofmatchesthatwillgetreturned,thesearesortedhightolow
dataframewithbothskeysandmatches
"""
s=df_2[key2].tolist()

m=df_1[key1].apply(lambdax:process.extract(x,s,limit=limit))
df_1['matches']=m

m2=df_1['matches'].apply(lambdax:[i[0]foriinxifi[1]>=threshold][0]iflen([i[0]foriinxifi[1]>=threshold])>0else'')
df_1['matches']=m2

returndf_1

fromfuzzywuzzyimportfuzz
fromfuzzywuzzyimportprocess

df=fuzzy_merge(data,company,'公司名称','公司名称',threshold=90)
df






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19286

    浏览量

    229822
  • 字符串
    +关注

    关注

    1

    文章

    579

    浏览量

    20515
  • python
    +关注

    关注

    56

    文章

    4797

    浏览量

    84685
  • 3D封装
    +关注

    关注

    7

    文章

    134

    浏览量

    27124

原文标题:两个好用到爆的 Python 模块,建议收藏!

文章出处:【微信号:AndroidPush,微信公众号:Android编程精选】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    利用两个元件实现 L 型网络阻抗匹配

    本文要点L型网络阻抗匹配是一简单的滤波器,由两个电抗元件组成。L型滤波器具有较宽的带宽,但在载波频率下响应速度缓慢。设计人员可以组合多个L型滤波器,实现更稳健的响应以及更高的品质因数。阻抗
    的头像 发表于 12-20 18:57 132次阅读
    利用<b class='flag-5'>两个</b>元件实现 L 型网络阻抗<b class='flag-5'>匹配</b>

    使用TPS546C23两个独立的单相评估模块

    电子发烧友网站提供《使用TPS546C23两个独立的单相评估模块.pdf》资料免费下载
    发表于 12-07 14:08 0次下载
    使用TPS546C23<b class='flag-5'>两个</b>独立的单相评估<b class='flag-5'>模块</b>

    手写图像模板匹配算法在OpenCV中的实现

    OpenCV中的模板匹配是支持基于NCC相似度查找的,但是不是很好用,一主要的原因是查找最大阈值,只能匹配,自己比对阈值,又导致无法正
    的头像 发表于 11-11 10:12 247次阅读
    手写图像模板<b class='flag-5'>匹配</b>算法在OpenCV中的实现

    Python常用函数大全

    Python 世界里,有一些宝藏函数和模块,它们可以让你编程更轻松、代码更高效。这篇文章将带你一一认识这些神器,让你的开发生活瞬间轻松不少!
    的头像 发表于 10-27 17:20 249次阅读

    单相电机两个绕组都在定子上吗

    单相电机的两个绕组,即起动线圈(或称为辅助绕组、副绕组)和运行线圈(或称为主绕组),都位于定子上 。这两个绕组在电机中起着关键作用,共同协作以产生旋转磁场,从而使电机能够运转。 单相电机通常由一
    的头像 发表于 09-03 15:10 788次阅读

    ad如何设置两个元器件的距离

    在Altium Designer(简称AD)中设置两个元器件之间的距离,主要是通过设置元器件间的安全间距(Clearance)规则来实现的。这个规则定义了元器件之间、元器件与走线之间以及其他设计元素
    的头像 发表于 09-02 15:31 7033次阅读

    触发器的两个稳定状态分别是什么

    触发器作为数字电路中的基本逻辑单元,具有两个稳定状态,这两个状态通常用于表示二进制数码中的0和1。
    的头像 发表于 08-12 11:01 1166次阅读

    双稳态电路的两个稳定状态是什么

    双稳态电路是一种具有两个稳定状态的电子电路,广泛应用于数字电路、通信系统、存储器等领域。 双稳态电路的基本概念 双稳态电路是一种具有两个稳定状态的电路,即在没有外部输入信号的情况下,电路可以保持在
    的头像 发表于 08-11 15:00 1420次阅读

    双稳态触发器的两个基本性质是什么

    双稳态触发器(Bistable Trigger)是一种具有两个稳定状态的逻辑电路,广泛应用于数字电路设计中。它具有两个基本性质:记忆性和切换性。 一、双稳态触发器的基本概念 1.1 双稳态触发器
    的头像 发表于 08-11 10:08 689次阅读

    如何使用SPI或UART连接两个ESP模块

    我使用 ESP-WROOM-02 模块进行我们的项目。 根据我们的要求,我们需要使用 UART 或 SPI 将两个 ESP 模块与一 ESP 模块
    发表于 07-19 16:08

    蓝牙Mesh模块组网时是一信号还是两个信号?

    随着科技的不断发展,智能家居、物联网等新兴领域越来越受到人们的关注。在这个领域中,蓝牙Mesh组网模块作为一种关键技术,其性能和作用备受瞩目。那么,蓝牙Mesh组网模块究竟是一信号还是两个
    的头像 发表于 05-24 15:14 976次阅读

    两个铜片可以形成原电池吗

    两个铜片本身不能形成原电池,因为原电池的工作原理依赖于两个不同电位的电极材料之间的氧化还原反应。
    的头像 发表于 05-21 16:23 966次阅读

    放大器器件手册上为什么会有MAG和MSG这两个指标呢?

    需要外匹配的管子的手册上,经常会有MAG和MSG这两个指标。
    的头像 发表于 03-18 18:21 3833次阅读
    放大器器件手册上为什么会有MAG和MSG这<b class='flag-5'>两个</b>指标呢?

    arcgis中如何关联两个属性表

    字段,这是进行关联的前提。关联字段是两个表中共有的字段,通过这个字段可以将两个表中的数据进行匹配和关联。 打开ArcMap软件,加载需要进行关联的两个数据表。可以通过“添加数据”功能加
    的头像 发表于 02-25 11:01 4236次阅读

    两个电位器地控制一变频器,如何接线?

    两个电位器地控制一变频器,如何接线? 接线方式如下: 1. 首先,明确需要使用的电器设备。在这个场景中,我们需要两个电位器(即可变电阻器)和一
    的头像 发表于 02-05 10:13 5270次阅读