0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SNOM对GaN基发光芯片的高空间分辨光学表征

第三代半导体产业 来源:第三代半导体产业 2023-08-04 18:10 次阅读

近日,“2023功率与光电半导体器件设计及集成应用论坛”于西安召开。论坛由第三代半导体产业技术创新战略联盟(CASA)指导,西安交通大学、极智半导体产业网(www.casmita.com)、第三代半导体产业主办,西安电子科技大学、中国科学院半导体研究所、第三代半导体产业技术创新战略联盟人才发展委员会、全国半导体应用产教融合(东莞)职业教育集团联合组织、西安和其光电股份有限公司等单位协办。

期间,“平行论坛2:光电子器件及应用”上,西安交通大学研究员李虞锋带来了“SNOM对GaN基发光芯片的高空间分辨光学表征”的主题报告,近场光学技术,克服了传统光学显微镜的衍射极限,可以实现超分辨率显微观测。报告分享了SNOM技术原理、技术特点与研究思路,空气腔阵列图案化蓝宝石基板生长量子阱,半极性 (20-21)蓝色和绿色量子阱,金属等离子体增强型量子阱等研究进展。

208c584e-312c-11ee-9e74-dac502259ad0.png

20a0f07e-312c-11ee-9e74-dac502259ad0.png

20dd14b4-312c-11ee-9e74-dac502259ad0.png

报告指出,利用SNOM探究了空气腔阵列结构LED空间分辨的发光特性,研究发现空气腔结构改善了外延的晶体质量、应力以及光提取效率,从而导致空气腔区域的IQE和EQE提高;空气腔区域晶体质量的改善提高了有效载流子浓度,导致大功率下空气腔区域中与俄歇复合相关的非辐射复合增加,droop加剧;利用SNOM探究了(20-21)半极性双波长LED的发光特性,研究发现TDs、SFs和几乎无缺陷区域的周期性交替分布导致PL强度和应力呈现周期性波动。

其中,几乎无缺陷的区域B,PL强度最高,应力最大,表现出最强的QCSE;绿光的峰值波长主要受In组分而不是QCSE的影响,而蓝光的峰值波长主要由应力导致的QCSE决定;绿光的半峰宽受缺陷的影响更为显著,而蓝光的半峰宽受QCSE的影响更为明显。利用SNOM探究了LSP耦合增强双波长蓝光QWs的微观特性,研究发现:观察到LSP耦合效应随耦合距离和激发功率变化逐渐演变的过程;随耦合距离减小,效率droop加重,说明当QWs自身的辐射复合较强时,LSP对效率droop产生的是负面影响。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 耦合器
    +关注

    关注

    8

    文章

    716

    浏览量

    59580
  • LSP
    LSP
    +关注

    关注

    0

    文章

    11

    浏览量

    9757
  • GaN技术
    +关注

    关注

    0

    文章

    37

    浏览量

    7656

原文标题:西安交通大学李虞锋:SNOM对GaN基发光芯片的高空间分辨光学表征

文章出处:【微信号:第三代半导体产业,微信公众号:第三代半导体产业】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    中国科大在纳米级空间分辨红外成像及催化研究中取得新进展

    位点在纳米尺度的高空间分辨鉴别。因此,基于突破光学衍射极限的原子力显微镜-红外光谱联用技术,在高空间分辨率下对材料形貌和表面吸附物种进行微区
    的头像 发表于 11-04 06:25 55次阅读

    南昌大学在声学分辨率光声显微成像增强方面研究获得进展

    图1.基于均值回归扩散模型的AR-PAM增强算法流程图 光声显微成像(PAM)作为一种前景广阔的成像模式,结合了光学成像的高空间分辨率和超声成像的深层组织穿透能力,在生物医学研究领域备受关注,在肿瘤
    的头像 发表于 10-08 06:19 186次阅读
    南昌大学在声学<b class='flag-5'>分辨</b>率光声显微成像增强方面研究获得进展

    基于AC驱动的电容结构GaN LED模型开发和应用

    随着芯片尺寸减小,微小尺寸GaN Micro LED 显示面临着显示与驱动高密度集成的难题,传统直流(DC)驱动技术会导致结温上升,降低器件寿命。
    的头像 发表于 09-07 10:45 241次阅读
    基于AC驱动的电容结构<b class='flag-5'>GaN</b> LED模型开发和应用

    高质量激光光束光学系统中的空间滤波

    空间滤波是光学中的一项关键技术,用于细化激光束,提高其质量,并最大限度地减少像差和不必要的衍射效应。通过采用透镜和光阑的组合,空间滤波选择性地从激光束中去除不想要的成分,例如噪声、衍射图案和
    发表于 08-14 11:54

    量子点材料发光属于什么发光

    量子点材料发光属于一种特殊的发光现象,称为量子限制发光。量子点是一种具有量子尺寸效应的纳米材料,其尺寸通常在1-10纳米之间。由于量子点的尺寸远小于光的波长,因此其电子结构和光学性质受
    的头像 发表于 07-12 09:39 485次阅读

    GaN功率HEMT制造中的缺陷及其表征方法

    泛的应用范围内推广,详细理解提高产量和可靠性的根本原因至关重要。本文中,我们总结了在GaN晶圆加工过程中常见的一些缺陷,以及用于检测这些缺陷的表征技术。01氮化镓晶体结构
    的头像 发表于 04-18 11:49 1047次阅读
    <b class='flag-5'>GaN</b>功率HEMT制造中的缺陷及其<b class='flag-5'>表征</b>方法

    520kHz和1.6MHz 高空间利用率升压和SEPIC直流/直流稳压器LM2735数据表

    电子发烧友网站提供《520kHz和1.6MHz 高空间利用率升压和SEPIC直流/直流稳压器LM2735数据表.pdf》资料免费下载
    发表于 04-12 11:01 0次下载
    520kHz和1.6MHz <b class='flag-5'>高空间</b>利用率升压和SEPIC直流/直流稳压器LM2735数据表

    如何分辨集成芯片的引脚排列

    分辨集成芯片的引脚排列可以通过多种方式进行,这主要取决于芯片的类型、封装方式以及具体的标识方法。
    的头像 发表于 03-19 16:01 2380次阅读

    浅谈超分辨光学成像

    分辨光学定义及应用 分辨光学成像特指分辨率打破了光学显微镜
    的头像 发表于 03-15 06:35 499次阅读
    浅谈超<b class='flag-5'>分辨</b><b class='flag-5'>光学</b>成像

    一次测量以表征对称叠加光学涡旋复振幅单分量

    复振幅测量是光场表征的必要前提,在这项工作中,课题组提出了一种仅用CCD记录的一幅图像来表征对称叠加光学涡旋(SSOV)复振幅的一次测量方法。
    的头像 发表于 01-16 14:13 450次阅读
    一次测量以<b class='flag-5'>表征</b>对称叠加<b class='flag-5'>光学</b>涡旋复振幅单分量

    光学系统的 MTF 与分辨率之间有什么关系?

    光学系统的 MTF 与分辨率之间的联系与区别。
    的头像 发表于 01-16 10:11 1578次阅读
    <b class='flag-5'>光学</b>系统的 MTF 与<b class='flag-5'>分辨</b>率之间有什么关系?

    中国首个高空风能项目成功发电

    号的消息,安徽绩溪高空风能发电新技术示范项目采用的是伞梯组合型陆高空风能发电技术路线,能够利用300-3000米高空风能进行发电;是我国高空
    的头像 发表于 01-10 18:58 1236次阅读

    【应用案例】扫描近场光学显微镜SNOM

    场)光学显微镜理论分辨率的阿贝衍射极限,将光学分辨率提高了几十甚至上百倍。且纵向分辨率优于横向分辨率,能够得到清晰的三维图像,以及局域荧光、
    的头像 发表于 01-09 14:19 754次阅读

    现代光学及光子技术的应用(1)

      摘要:光学作为一门诞生340余年的古老科学,经历了漫长的发展过程,从经典光学到近代光学,再到现代光学,它的发展也表征着人类社会的文明进程
    的头像 发表于 11-30 15:36 522次阅读
    现代<b class='flag-5'>光学</b>及光子技术的应用(1)

    GaN氮化镓的4种封装解决方案

    GaN氮化镓晶圆硬度强、镀层硬、材质脆材质特点,与硅晶圆相比在封装过程中对温度、封装应力更为敏感,芯片裂纹、界面分层是封装过程最易出现的问题。同时,GaN产品的高压特性,也在封装设计过程对爬电距离的设计要求也与硅
    的头像 发表于 11-21 15:22 1102次阅读
    <b class='flag-5'>GaN</b>氮化镓的4种封装解决方案