0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

什么是傅里叶变换?

射频学堂 来源:射频学堂 2023-08-10 09:55 次阅读

对于一个离开课堂十余年的射频工程师来说,傅里叶变换已经不知道埋藏在脑子里的那个角落,或者根本就没在脑子里停留过。但无论如何,傅里叶变换对现在通信的重要性还是不言而语。当我们已经习惯用频域去描述一个信号的时候,你可曾思考过其真实的样子到底是什么?为什么这几个短短的频谱就可以描述一个信号?

所以呢,我们首先得感谢傅里叶,正是傅里叶大神的天才发明,带给我们一个全新的看待问题的角度,让我们跳出时域这个圈子,站在频域的角度去看待问题。这样做又有什么好处呢?且看下文。

首先来瞻仰一下傅里叶大神的肖像,致敬两分钟。(做好阅读全文的心理准备)

其实傅里叶大神在最初提出这个思想的时候,并没有想着去解决信号的问题,而是要来描述温度的变化曲线,其实当时麦克斯韦也还没有出生。傅里叶大神在1830年去世的时候,麦克斯韦还是是个躲在妈妈肚子里的小贝比呢。发明电话的那个亚历山大贝尔还要再过十几年才出生。所以,无心插柳柳成荫吧。其实傅里叶变换除了在通信上有很重要的应用,在很多领域都有着不可替代的重要性。其作为一个数学工具,已经遍布现代科技的各个角落。傅里叶大神当时在法国科学学会上发表了一篇论文,这篇论文用正弦波来描述温度变化曲线。如果只简单描述温度曲线的话也就罢啦,他出人意料的提出了一个在当时具有相当大的争议性的论断:任何连续周期信号可以由一组适当的正弦曲线组合而成。就像我们做选择题一样,太武断的答案一定是错的,所以当时人们也特别质疑过这个论断,最著名的当属两个最著名的数学家拉格朗日和拉普拉斯。当时他们哥俩是傅里叶这篇论文的审稿人。所以说当时真是个神仙打架的时代。刚好在傅里叶大神的这篇论文审查时,拉格朗日和拉普拉斯两位拉氏牛人就干起来了。拉普拉斯同意傅里叶的观点,并同意发表这篇论文,而拉格朗日则坚决反对,因为拉格朗日坚决认为,傅里叶的方法无法表示带棱角的信号。大家被高等数学里面拉格朗日的各种数学分析方法折磨,就知道,这个牛人我们惹不起,当时更没人去挑战拉格朗日的权威。因此这个论文就迟迟没有发表。直到拉格朗日去世15年之后才公布于世。

不用说,现在傅里叶的论断确实是正确的,为什么呢?因为老师说了,我们学了。那到底是不是这个回事呢?

我们先来看一下矩形信号能不能用一组适当的正弦曲线来组合而成?看下图所示,一个正弦曲线时,和矩形差远了。但是当叠加的正弦信号越来越多的时候,这个组合而来的图形就越来越方了。当有无穷多个正弦曲线组合到一起的时候,这个组合图就是矩形了。奇怪的是拉格朗日发明了无穷级数,怎么能没想到这点呢?可能是屁股决定了脑袋。

wKgaomTUQ7yAayQuAAAq-4lrAEs168.png

wKgZomTUQ7yAJoawAABM4kerW_8770.png

wKgaomTUQ7yARBNYAABj4JvN3Jw135.png

wKgaomTUQ7yAYwdQAACK_7Z-scY921.png

wKgaomTUQ7yAel2UAAD-ytAnPXA087.gif

当然,人们对傅里叶的论断又做了补充和扩展。傅里叶变换就是:

f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。

wKgZomTUQ7yAdQQ9AAA7hZG34Xo423.jpg

我们先把上面这个公式抛在脑后,接着讲一下为什么是正弦曲线Sin(x)/余弦曲线?因为它简单啊。它就是一个棍在转圈圈。当一个点在绕着一个圆心做圆周运动时,其随时间变化的曲线就是正弦曲线/余弦曲线。

wKgZomTUQ72ACEFXAAJ3Us3IStY925.gif

当我们把一组沿着不同圆周,不同圆心转圈圈的点都拉到时间轴上来的时候,其就会变得越来越方。

wKgZomTUQ72AXk5WAAJVzMWwP8o598.gif

那跟频域有什么关系呢?

好像有没啥关系,这就是傅里叶级数吧。

wKgaomTUQ72AS4FxAAEluS9me_Q679.png

没错,就是傅里叶级数,但是把傅里叶级数的求和表示成积分形式就是傅里叶变换。

wKgZomTUQ72AIPSTAABmS04u5pw303.png

可能这里大家有点疑惑,上面傅里叶级数用的是三角函数Sin和Cos,但是下面的傅里叶变换却换成了e的指数。原因有两个,一是,太懒了,不想再编辑公式,第二个是感谢欧拉!欧拉统一了e的指数和正余弦函数:

wKgaomTUQ72AL22nAAB6iNnzM38157.png

我们继续研究上文的那个矩形曲线。我们把组成矩形曲线的这些正弦曲线铺开放平,就可以观察到它的频域方向。从频域方向看过去,就是一个个一定幅度的固定在某一频率上的线。从频域方向看过去,所有都静止了,没有时间了。也就是说,我们通过傅里叶变化,把信号从时域空间搬到了频域空间。

wKgZomTUQ72AbatqAACQ_Ws8LxM701.jpg

就像我们之前讨论电磁波的三要素一样,这个频域信号也具有同样的三要素:幅度,频率和相位。幅度就是信号的强弱,或者是傅里叶级数里面的an,频率就是里面的wKgaomTUQ72AKgYeAAADW_gHq94277.png,相位就是信号的初始位置。

至此,我们就把信号从时域空间搬运到了频域空间,而且两个空间所描述的信号是一模一样的,就像一个人有两个名字一样,刘备和刘玄德都是指的同样一个人。频域里的信号和时域里的信号一样。所以,有时候分析一个信号,我们可以用频谱分析仪去看它的频谱,也可以用示波器去看它的波形一样。

wKgZomTUQ72AXKfuAAGYEc8SUHU496.gif

那么只要是满足狄里赫莱条件的信号,都可以用傅里叶变换把其从时域变换到频域。因为它都可以分解成一系列合适的正弦曲线的组合。

wKgaomTUQ72Aad1PAAG4LE2xia8116.png

比如像FM调制的信号,其时域波形和频谱如下图所示。

wKgZomTUQ72AfersAAClebJQ-LU138.png

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 射频
    +关注

    关注

    104

    文章

    5545

    浏览量

    167528
  • 信号
    +关注

    关注

    11

    文章

    2778

    浏览量

    76609
  • 傅里叶变换
    +关注

    关注

    6

    文章

    437

    浏览量

    42562

原文标题:什么是傅里叶变换?

文章出处:【微信号:射频学堂,微信公众号:射频学堂】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    傅里叶变换

    傅里叶变换
    发表于 05-09 10:02

    学习傅里叶变换意义和方法

    学习傅里叶变换需要面对大量的数学公式,数学功底较差的同学听到傅里叶变换就头疼。事实上,许多数学功底好的数字信号处理专业的同学也不一定理解傅里叶变换的真实含义,不能做到学以致用!事实上,傅里叶变
    发表于 06-28 07:31

    傅里叶变换是什么?如何求傅里叶变换

    傅里叶变换是什么?三傅里叶变换的意义是什么?如何求傅里叶变换
    发表于 05-08 09:23

    DSP变换运算-傅里叶变换

    第24章 DSP变换运算-傅里叶变换本章节开始进入此教程最重要的知识点之一傅里叶变换。关于傅里叶变换,本章主要是把傅里叶相关的基础知识进行必要的介绍,没有这些基础知识的话,后面学习FF
    发表于 08-03 06:14

    什么是傅里叶变换

    什么是傅里叶变换 傅里叶变换(Transformée de Fourier)是一种积分变换。 因其基本思想首先
    发表于 11-29 12:46 9490次阅读
    什么是<b class='flag-5'>傅里叶变换</b>

    小波变换傅里叶变换好在哪里_小波变换傅里叶变换详解

    小波变换傅里叶变换有什么区别吗?小波变换傅里叶变换哪个好?我们通过小波变换傅里叶变换的详细
    发表于 01-13 11:02 1.6w次阅读
    小波<b class='flag-5'>变换</b>比<b class='flag-5'>傅里叶变换</b>好在哪里_小波<b class='flag-5'>变换</b>与<b class='flag-5'>傅里叶变换</b>详解

    傅里叶变换的介绍傅里叶变换有什么意义和应用

    傅里叶变换是数字信号处理领城种很重要的算法。傅里叶表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该
    发表于 04-30 08:00 2次下载
    <b class='flag-5'>傅里叶变换</b>的介绍<b class='flag-5'>傅里叶变换</b>有什么意义和应用

    傅里叶变换基本性质 傅里叶变换本质 傅里叶变换的应用

    傅里叶变换基本性质 傅里叶变换本质 傅里叶变换的应用 傅里叶变换是现代数学、物理学、工程学等领域中非常重要的一种数学工具和基本理论。在信号处理、图像处理、通信技术、音乐分析、光学、医学
    的头像 发表于 09-07 16:18 6459次阅读

    傅里叶变换的本质及物理意义 常用傅里叶变换性质

    傅里叶变换的本质及物理意义 常用傅里叶变换性质 傅里叶变换是一种重要的数学工具,通过将一个复杂的函数表示为一系列简单的正弦余弦函数之和,可以在许多领域应用,包括信号处理、图像处理、物理学等。在本文
    的头像 发表于 09-07 16:30 3960次阅读

    傅里叶变换公式理解

    傅里叶变换公式理解 傅里叶变换是一种在数学、物理、工程和其他科学领域中常用的工具,它是一种将一个函数从时域转换到频域的方法。傅里叶变换可以将一个复杂的函数表示成一个频域上各种周期函数的叠加,从而
    的头像 发表于 09-07 16:53 4083次阅读

    傅里叶变换和离散傅里叶变换的关系

    傅里叶变换和离散傅里叶变换的关系 傅里叶变换(Fourier Transform)是一种将时间域(或空间域)的信号转换为频率域(或波数域)的信号的数学工具。而离散傅里叶变换(Discr
    的头像 发表于 09-07 17:04 2493次阅读

    傅里叶变换的定义 傅里叶变换的意义

    傅里叶变换的定义 傅里叶变换的意义  傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。 在不同的研究领域,傅里叶变换具有多种不同
    的头像 发表于 11-30 15:32 1932次阅读

    什么是傅里叶变换和逆变换?为什么要用傅里叶变换?

    傅里叶变换和逆变换是一对数学变换,用于分析信号和数据的频域特征。傅里叶变换将一个信号或函数从时间域转换到频域,而逆变换则将
    的头像 发表于 01-11 17:19 3622次阅读

    傅里叶变换的应用 傅里叶变换的性质公式

    傅里叶变换(Fourier Transform)是一种数学方法,可以将一个函数在时间或空间域中的表示转化为频率域中的表示。它是由法国数学家约瑟夫·傅里叶(Jean-Baptiste Joseph
    的头像 发表于 02-02 10:36 1182次阅读

    经典傅里叶变换与快速傅里叶变换的区别

    经典傅里叶变换与快速傅里叶变换(FFT)在多个方面存在显著的区别,以下是对这两者的比较: 一、定义与基本原理 经典傅里叶变换 : 是一种将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数
    的头像 发表于 11-14 09:37 125次阅读