机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
在实际场景中,机器视觉检测设备在检测产品时的一些不稳定因素,会直接导致检测精度与效率受到很大的影响。下面和大家一起分析如何根据分辨率,精度,公差的关系指导选型。
分辨率(Resolution)
计算公式:分辨率 = 视野(Field of View)/像素(Pixel) 比如我要看的产品大小是30mm*10MM,使用200万像素(1600pixel*1200pixel)的相机。因为产品是长条形,为了把产品都放入到视野内,我们计算分辨率的时候要考虑长边对应,此时分辨率为:分辨率 = 30mm/1600Pixel = 0.019mm/Pixel
精度(Accuracy)
计算公式:精度 = 分辨率 x 有效像素
精度的单位是mm。根据产品表面和照明状况的不同,我们可以通过放大图像观察辨别稳定像素的个数,从而得出精度。如果条件不允许实际测试观察,一般的规律是,如果使用正面打光,有效像素为1个,使用背光,有效像素为0.5个。
这个例子我们取1 Pixel,得到精度为0.019mm约等于0.02mm。
机器视觉系统的定位精度如何计算?
假如是30万像素的摄像机,监控的面积为640x480mm,其精度是不是就是1mm了?
30W相机分辨率640*480 正常这样算:用最长的边除去监控面积最长的边 即可,所以精度基本上是1mm,这个是理论值,如果你做测量或者表面划伤检测,肯定不准确,一个像素有可能无法凸显特征。
公差(Tolerance)
一般情况下,精度和公差的对应关系如下:
对一个项目来讲,我们是先从图纸上读到公差的要求。然后再根据上述关系,反推得出我们需要多少像素的相机。
测量时,首先要考虑的几大方面的有:相机、镜头、光源。
选择要考虑的因素有很大,这里依据一个经手的项目介绍一下精度方面需要考虑的问题。
项目要求:像素精度0.05mm、测量误差正负0.15mm。首先介绍一下相关的概念:
像素精度:一个像素在真实世界代表的距离,即拍摄视野/分辨率。例如我所使用的大华500万相机,分辨率2592*2048,在视野中长的一边100mm,即可拍到100mm的物体,那么在这一方向的像素精度为100/2592mm约为0.0386mm。
测量误差:使用算法测量的距离/长度与真实值的误差。
亚像素精度:亚像素精度是指相邻两像素之间细分情况,输入值通常为二分之一,三分之一或四分之一。即每个像素将被分为更小的单元从而对这些更小的单元实施插值算法。
例如,如果选择四分之一,就相当于每个像素在横向和纵向上都被当作四个像素来计算。实际测量或检测时需要考虑的还有很多,例如帧率、曝光、增益等。
-
机器视觉
+关注
关注
162文章
4378浏览量
120389 -
检测
+关注
关注
5文章
4490浏览量
91509 -
人工智能
+关注
关注
1791文章
47344浏览量
238728
发布评论请先 登录
相关推荐
评论