0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

注意!设计高能效 AC-DC 电源不再需要 MCU

安森美 来源:未知 2023-08-15 19:10 次阅读

点击蓝字关注我们


电网因为诸多原因而被设计成交流电,但几乎每台设备都需要直流电才能运行。因此,AC-DC 电源几乎无处不在,随着环保意识的加强和能源价格的上涨,此类电源的效率对于降低运行成本和合理利用能源至关重要。
简单地说,效率就是输入功率与输出功率之比。但是,必须要考虑输入功率因数 (PF),即所有 AC 供电设备(包括电源)的有用(实际)功率与总(视在)功率之比。

对于纯阻性负载,PF 将为 1.00(“单位”),但随着视在功率的升高,无功负载会降低 PF,从而导致效率降低。小于 1 的 PF 由异相电压和电流引起,在开关型电源 (SMPS) 等不连续电子负载中常常会出现谐波含量高或电流波形失真的情况。


PF校正

考虑到低 PF 对效率的影响,当功率水平高于 70W 时,法规要求设计人员通过电路将 PF 校正到接近 1。通常,有源 PF 校正 (PFC) 采用升压转换器,将整流电源转换为高直流电平。然后使用脉宽调制 (PWM) 或其他技术对该电源轨进行调节。


此方法通常有效且易于部署。然而,如今有关效率的诸多要求,如具有挑战性的“80+ Titanium标准”,规定了整个宽工作功率范围内的效率,要求半负载时的峰值效率需达到 96%。这意味着线路整流和 PFC 级必须达到 98%,因为接下来的 PWM DC-DC 将会进一步损耗 2%。要做到这一点非常难,因为桥式整流器中的二极管也会出现损耗。


同步整流器替换升压二极管会有所帮助,或者,也可以更换两个线性整流二极管,以进一步提高效率。这种拓扑结构被称为图腾柱 PFC (TPPFC),理论上,使用理想的电感和开关,效率将会接近 100%。虽然硅 MOSFET 具有良好的性能,但宽禁带 (WBG) 器件的性能更接近“理想”水平。

图 1:简化的图腾柱 PFC 拓扑结构


处理损耗

随着设计人员不断增加频率以减小磁性组件的尺寸,开关器件的动态损耗也随之增加。由于硅 MOSFET 的这些损耗可能很大,设计人员正转而考虑使用 WBG 材料,其中包括碳化硅 (SiC)和氮化镓 (GaN),特别是对于 TPPFC 应用。


临界导通模式 (CrM) 通常是功率水平高达几百瓦的 TPPFC 设计的首选方法,它可以平衡效率和 EMI 性能。在千瓦级设计中,连续导通模式 (CCM) 可进一步降低开关内的 RMS 电流,从而减少导通损耗。

图 2:典型 PFC 电路:传统升压(左)和无桥图腾柱(右)


即使是 CrM,在轻载下的效率也会下降近10%,不利于实现“80+ Titanium标准”。箝位(“折返”)最大频率迫使电路在轻载下进入 非连续导通模式(DCM),从而显著降低峰值电流。


解决设计复杂性

由于需要同步驱动四个有源器件,并且需要检测电感的零电流交越以强制 CrM,因此 TPPFC 设计绝非易事。此外,电路必须能够切换进/出 DCM,同时保持一个高功率因数并生成一个 PWM 信号来调节输出,并且提供电路保护(例如过流和过压)。


要解决这些复杂难题,最显而易见的方法是部署微控制器 (MCU) 来执行控制算法。但这需要生成和调试代码,反而会增加设计的工作量和风险。


基于CrM 的 TPPFC 无需编码

不过,使用完全集成的 TPPFC 控制方案就可以免去费时的编码工作。这些器件具有多种优势,包括高性能、更短的设计时间和更低的设计风险,因为它们不再需要部署 MCU 和相关代码。


安森美 (onsemi) 的 NCP1680 混合信号 TPPFC 控制器就是这类器件的典范,它可以在具有恒定导通时间的 CrM 下工作,确保在整个宽负载范围内带来出色的效率。该集成器件在轻载下具有频率折返“谷底开关”功能,可通过在最低电压下进行开关操作来提高效率。数字电压控制环路经过内部补偿,可优化整个负载范围内的性能,同时能够确保设计过程仍简单。


图 3:NCP1680混合信号 TPPFC 控制器


这款创新的 TPPFC 控制器采用新颖的低损耗方法进行电流检测和逐周期限流,无需外部霍尔效应传感器即可提供出色的保护,从而降低复杂性、尺寸和成本。

图 4:NCP1680 典型应用原理图


全套控制算法都嵌入在该 IC 中,为设计人员提供了低风险、经过试用和测试验证的方案,以高性价比实现高性能。


点击“阅读原文”可观看使用 300 W 图腾柱无桥 PFC 和 LLC 电源应对超高密度设计挑战,了解 NCP1680 的更多信息



点个星标,茫茫人海也能一眼看到我

点赞、在看,记得两连~」


原文标题:注意!设计高能效 AC-DC 电源不再需要 MCU

文章出处:【微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 安森美
    +关注

    关注

    32

    文章

    1642

    浏览量

    91913
  • 智能电源
    +关注

    关注

    0

    文章

    180

    浏览量

    20326

原文标题:注意!设计高能效 AC-DC 电源不再需要 MCU

文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    tas5630与大地相连就会烧毁AC-DC模块,如何解决?

    -外壳-thermal pad-agnd/gnd,最终agnd/gnd与大地相连了,但是这是我不希望出现的,因为agnd/gnd是通过AC-DC模块得到的信号参考地,与大地相连就会烧毁AC-DC模块。 像这样的情况该如何解决,谢谢!
    发表于 11-08 06:31

    AC-DC环路布局设计原则

    智能开关电源设计中,AC-DC的环路布局对于整个电源系统的性能至关重要。良好的布局可以提高电源的效率,减少电磁干扰(EMI),并确保系统的稳定性和可靠性。
    的头像 发表于 10-24 17:11 222次阅读
    <b class='flag-5'>AC-DC</b>环路布局设计原则

    Ac-dc difference指的是什么?

    Ac-dc difference指的是什么?
    发表于 09-13 07:54

    微盟电子AC-DCDC-DC、 LDO产品线介绍

    微盟电子AC-DCDC-DC、 LDO产品线介绍
    的头像 发表于 08-19 14:25 768次阅读
    微盟电子<b class='flag-5'>AC-DC</b>、<b class='flag-5'>DC-DC</b>、 LDO产品线介绍

    LED电源芯片中AC-DCDC-DC的区别在哪里?

    明确是强电、交流电。用在家用电器、电工领域。 一般插座可视为DC直流电,比如充电器、其它电子产品插座,连接器等。电子应用方面较广。 LED电源芯片AC-DCDC-DC的主要区别在于其
    的头像 发表于 08-13 10:12 846次阅读
    LED<b class='flag-5'>电源</b>芯片中<b class='flag-5'>AC-DC</b>和<b class='flag-5'>DC-DC</b>的区别在哪里?

    内置900V~1500V MOSFET的高可靠性AC-DC电源芯片

    内置900V~1500V MOSFET的高可靠性AC-DC电源芯片
    的头像 发表于 08-08 09:50 682次阅读
    内置900V~1500V MOSFET的高可靠性<b class='flag-5'>AC-DC</b><b class='flag-5'>电源</b>芯片

    探索AC-DC电源管理芯片:高效能和高集成度的关键

    在现代电子设备中,电源管理是至关重要的一环。AC-DC电源管理芯片作为一种核心组件,广泛应用于各种电子产品,从家用电器到工业设备,再到智能家居系统。这些芯片将交流电(AC)转换为直流电
    的头像 发表于 07-22 11:42 788次阅读
    探索<b class='flag-5'>AC-DC</b><b class='flag-5'>电源</b>管理芯片:高效能和高集成度的关键

    使用DCAC电源模块时需要注意的事项

    BOSHIDA  使用DC/AC电源模块时需要注意的事项 1. 仔细阅读和理解产品说明书:在使用DC/A
    的头像 发表于 07-03 13:27 316次阅读
    使用DCAC<b class='flag-5'>电源</b>模块时<b class='flag-5'>需要注意</b>的事项

    增加AC-DC电源掉电试验结果与分析

    DC-DC部分工作电压成反比。在实际的工程环境中,输入电压是固定的。对某一款具体的AC-DC电源产品来说,内部输入滤波电容Cin、DC-DC部分工作电压Vin_min、效率η都已无法
    发表于 06-20 14:46

    高性能 AC-DC 氮化镓电源管理芯片DK036G数据手册

    电子发烧友网站提供《高性能 AC-DC 氮化镓电源管理芯片DK036G数据手册.pdf》资料免费下载
    发表于 05-23 17:23 3次下载

    高性能AC-DC 氮化镓电源管理芯片DK020G数据手册

    电子发烧友网站提供《高性能AC-DC 氮化镓电源管理芯片DK020G数据手册.pdf》资料免费下载
    发表于 05-23 17:21 0次下载

    高性能AC-DC 氮化镓电源管理芯片DK80xxAP数据手册

    电子发烧友网站提供《高性能AC-DC 氮化镓电源管理芯片DK80xxAP数据手册.pdf》资料免费下载
    发表于 05-11 11:19 0次下载

    AC/DC电源模块的设计与实现技巧

    BOSHIDA AC/DC电源模块的设计与实现技巧 AC/DC电源模块是一种常用的
    的头像 发表于 05-07 11:25 747次阅读
    <b class='flag-5'>AC</b>/<b class='flag-5'>DC</b><b class='flag-5'>电源</b>模块的设计与实现技巧

    STM32F334有数字双向AC-DC吗?

    我在官网看到了关于STM32F334数字AC-DC的东西,有数字双向AC-DC的东西吗,最好是DC输出电压电流可调的
    发表于 04-23 07:49

    DK020G东科AC-DC 氮化镓电源管理芯片

    ,从而减小开关损耗并改善电磁干扰(EMI)。DK020G极大的简化了反激式AC-DC转换器的设计和制造,尤其是需要高转化效率和高功率密度的产品。DK020G具备完善的保护功能:输出过压保护(OVP),VC
    的头像 发表于 01-27 17:08 769次阅读
    DK020G东科<b class='flag-5'>AC-DC</b> 氮化镓<b class='flag-5'>电源</b>管理芯片