0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微重力下3D组织结构的生物制造及其在人体病理生理研究中的应用

微流控 来源:微流控 2023-08-16 09:10 次阅读

近年来,人们对生物工程的兴趣日益浓厚,尤其是体内类3D功能组织,这促进了生物制造过程新方法的建立,并扩大了这些独特的组织结构的应用。太空飞行过程中产生的微重力是一种独特的环境,可能有利于组织工程过程,但不能在地球上完全复制。此外,在太空中进行人类和动物研究的费用和实际挑战使生物工程微生理系统成为一种有吸引力的研究模式。

基于此,近期,约翰·霍普金斯大学的Deok-Ho Kim教授和美国布朗大学的Peter H.U. Lee教授对相关研究,例如利用真实和模拟的微重力来改善各种组织类型的生物制造,以及使用微生理系统(如器官/组织芯片和多细胞类器官)在空间中建立人类疾病模型等进行了总结,并讨论了真实和模拟的微重力平台及其在组织工程微生理系统中的应用,包括:(1)应用微重力条件改进组织结构的生物制造;(2)利用在微重力条件下制作的组织结构作为地球上人类疾病的模型;(3)利用生物制造的体外模型研究微重力对人体组织的影响。相关内容以“Biomanufacturing of 3D tissue constructs in microgravity and their applications in human pathophysiological studies”为题发表在Advanced Healthcare Materials期刊上。

真实微重力(r-μG)可以通过在飞机或太空飞行器上的自由落体飞行模式来实现。根据飞行的高度,这些平台可以分为抛物线、亚轨道和轨道(图1)。飞机上的抛物飞行通常在大约10公里的高度进行(图1A)。在抛物线飞行期间,一架飞机在大约20 ~ 40秒的自由落体r-μG阶段和1.8 G的超重力上拉阶段之间交替飞行20 ~ 60条抛物线(图1B)。与抛物线飞行不同,亚轨道飞行(图1C)有一个更长的轨道,可以达到海平面以上100公里,达到空间的技术边界。国际空间站(ISS,图1D、E)于1998年发射后,作为μG研究环境实验室,是目前使用最密集的r-μG研究平台。

ecbb9bec-3bd0-11ee-9e74-dac502259ad0.png

图1 用于生物研究的真实微重力平台

旋转壁容器(RWV),或旋转细胞培养系统(RCCS)由一个可以装满培养基的圆柱体组成,并以恒定的速度围绕其中心轴不断旋转,以及一个氧气补充单元,或者在培养柱的中心作为一个较小的静态钢瓶,或者在其底部作为一个多孔板(图2A)。

RWV通过向上的水动力牵引,迫使圆柱体中的粒子进行连续的圆周运动,从而创造了μG条件,这反过来在理论上与旋转过程中产生的向下重力相抵消(图2B)。恒定器是一种装置,它使样品围绕单个或多个轴连续旋转,以抵消向下的重力对生物系统的影响(图2C)。

在旋转过程中,样品向下的重力可以在数学上平均为零,在旋转轴周围产生一个类似μG的理论环境(图2D)。与2D倾斜器使样品保持在圆柱形表面上旋转不同,3D倾斜器使样品在虚拟球形平面上旋转(图2E)。为了获得更好的μG模拟结果,研究人员通过随机化两个轴的转速和方向,进一步优化了3D倾斜器(图2F)。

ece84408-3bd0-11ee-9e74-dac502259ad0.png

图2 工程组织模拟微重力的方法

生物制造的目标是生成与生理相关的功能性3D组织结构,如微组织(即球状体)和具有典型的细胞和大分子组织的类器官。3D细胞结构允许相同或不同类型的细胞之间的多维附着和相互作用,与2D细胞培养相比,这更好地模拟了体内环境。因此,3D组织结构被更多地用于临床应用,包括体外疾病建模和植入。在模拟微重力(s-μG)环境中,细胞可以悬浮在培养基中,形成具有改进的生理特性的多细胞球状体,包括更大的尺寸、更小的缺氧中心、微结构,以及有或没有微载体作为支架的组织特异性标记物的表达(图3)。例如,RWV(图3A左)制作的人骨类器官比标准重力(图3A右)表现出更高的碱性磷酸酶(ALP)的表达。

在RWV中形成的人胚胎干细胞来源的神经类器官显示了神经标记物MAP2的表达(图3B)。在RWV中形成的人肝类器官具有多层结构(图3C)。在r-μG条件下形成的人诱导多能干细胞(hiPSC)来源的心脏类器官比在标准重力条件下形成的球状体显示出更大的直径(图3D)。在RWV中培养的类器官中可以观察到滋养层细胞的融合(图3E)。在RWV中形成的人肠上皮类器官显示了上皮特异性抗原(ESA)的表达(图3F)。

ed44e352-3bd0-11ee-9e74-dac502259ad0.png

图3 在模拟和真实的微重力环境中制备的组织类器官

如上所述,在μG环境中形成的特定组织类型的3D多细胞球状体表现出包括仿生性、复杂的微观结构和更小的缺氧面积等生理特性。因此,它们是体外疾病建模和细菌感染及细胞-细胞相互作用研究的理想选择(图4)。此外,μG诱导的心脏功能障碍、骨丢失和骨骼肌萎缩已经在μG平台上使用体外组织模型进行了研究。相关研究利用在μG平台上制作的组织模型,研究了甲状腺、肺和肠等器官的非微重力相关病理。

ed64f430-3bd0-11ee-9e74-dac502259ad0.png

图4 利用微重力平台作为工具研究人体的病理状况

目前,已有研究人员利用A549肺上皮细胞与微珠共培养的类器官在旋转壁血管(RWV)中形成了结实的3D聚集(图5A)。感染表达GFP的铜绿假单胞菌后,球状体显示绿色感染区域(图5B)。HCT-8细胞系的类器官在RWV中培养后显示出柱状上皮样结构,并表现出细小隐孢子虫局部感染(黑色箭头)(图5C、D)。在RWV中制备的肝肿瘤类器官显示在2周时HCT-116结肠癌细胞(红色)的增殖(图5E)。在用激动剂BIO或拮抗剂XAV939调节WNT通路后,HCT-116细胞的增殖发生了明显的变化,说明WNT通路影响HCT-116的增殖(图5F)。

edc3845a-3bd0-11ee-9e74-dac502259ad0.png

图5 在s-μG环境中制备的组织类器官的代表性病理研究应用

此外,更多组织类型的微生理系统正在被应用于许多正在进行的空间生物学项目中(图6)。这些被资助的项目包括不同组织类型的应用,如hiPSC衍生的工程心脏组织、肾脏近端和远端小管组织芯片、人类骨骼肌模型和人类血脑屏障芯片等。

ee664d98-3bd0-11ee-9e74-dac502259ad0.png

图6 已在ISS美国国家实验室飞行的代表性组织芯片

综上所述,该论文总结了微重力用于有、无支架的各种细胞类型的3D构建。除了可以产生模拟微重力和不同支架类型的生物反应器外,这些细胞系本身也可以被认为是选择其特定生成潜力的工具。干细胞由于其多能性,通常最有利于3D结构的形成。通过在微重力模拟平台上共培养多种细胞类型,也可以形成更大的仿生结构,为个性化医学和病理研究提供更精确的模型。虽然微重力已被证明可以增强类器官的形成,但抑制球状体形成的矛盾结果也存在。这可能归因于使用了不同的方案,包括支架的大小和培养时间。然而,某些组织类型的发展,特别是肌肉组织,可能会因微重力改变的机械感应途径而变得复杂,这使得这些平台可能在研究这种病理机制方面更加有用。总的来说,空间医学生物学的研究加强了对推进再生医学领域的努力。随着人类继续冒险进入“最终前沿”,研究人员也必须继续探索生物医学科学和生物工程的新前沿。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 模拟器
    +关注

    关注

    2

    文章

    873

    浏览量

    43180
  • 反应器
    +关注

    关注

    2

    文章

    96

    浏览量

    11037
  • ESA
    ESA
    +关注

    关注

    0

    文章

    17

    浏览量

    10022
  • GFP
    GFP
    +关注

    关注

    0

    文章

    5

    浏览量

    1403

原文标题:综述:微重力下3D组织结构的生物制造及其在人体病理生理研究中的应用

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    3D集成电路的结构和优势

    3D 集成电路的优势有目共睹,因此现代芯片中也使用了 3D 结构,以提供现代高速计算设备所需的特征密度和互连密度。随着越来越多的设计集成了广泛的功能,并需要一系列不同的特征,3D 集成
    的头像 发表于 12-03 16:39 188次阅读
    <b class='flag-5'>3D</b>集成电路的<b class='flag-5'>结构</b>和优势

    FPC与3D打印技术的结合 FPC汽车电子的应用前景

    的电路板,它能够在有限的空间内实现复杂的电路布局。FPC以其轻巧、灵活和耐用的特性,电子设备得到了广泛应用。 3D打印技术简介 3D打印技术,又称为增材
    的头像 发表于 12-03 10:23 90次阅读

    3D打印珠宝行业的设计和制造应用-CASAIM

    随着3D打印技术的飞速发展,珠宝行业正经历一场深刻的变革。传统的珠宝制造方法通常包括多个繁琐的工序,如起版、压制模具、打蜡和修理模具等。这些步骤不仅耗时长,而且对材料、设备和人工成本要求较高。相比之下,CASAIM的3D打印技术
    的头像 发表于 11-23 16:36 159次阅读
    <b class='flag-5'>3D</b>打印<b class='flag-5'>在</b>珠宝行业的设计和<b class='flag-5'>制造</b>应用-CASAIM

    UV光固化技术3D打印的应用

    UV光固化3D打印技术凭借高精度、快速打印环保优势,工业设计等领域广泛应用。SLA、DLP及CLIP技术各具特色,推动3D打印向高速、高精度发展。
    的头像 发表于 11-15 09:35 278次阅读
    UV光固化技术<b class='flag-5'>在</b><b class='flag-5'>3D</b>打印<b class='flag-5'>中</b>的应用

    3D打印技术应用的未来

    进一步拓宽 生物医疗 : 3D打印技术能够根据患者的具体需要定制化生产义肢、植入物等,极大地提高了医疗效果和患者的生活质量。 未来,3D打印技术甚至可能打印出功能性组织和器官,解决器官
    的头像 发表于 10-25 09:28 488次阅读

    ATA-7020高压放大器微纳3D打印技术研究的应用

    实验名称:微纳3D打印技术研究实验原理:用自激发静电场形成泰勒锥缩颈效应实现锥射流微喷射,并结合极化电荷吸引作用实现多层精准堆积,完成3D微纳结构增材
    的头像 发表于 09-03 15:23 796次阅读
    ATA-7020高压放大器<b class='flag-5'>在</b>微纳<b class='flag-5'>3D</b>打印技术<b class='flag-5'>研究</b><b class='flag-5'>中</b>的应用

    工业镜头3D结构光检测实际应用

    工业镜头3D结构光检测实际应用
    的头像 发表于 06-01 08:34 287次阅读
    工业镜头<b class='flag-5'>在</b><b class='flag-5'>3D</b><b class='flag-5'>结构</b>光检测<b class='flag-5'>中</b>实际应用

    多尺度浸入式3D打印策略,用于人体组织和器官的精准制造

    生物3D打印技术被认为是实现复杂人体组织和器官构建的最有前景的技术方案之一。近年来,浸入式墨水书写技术作为生物
    的头像 发表于 04-20 11:43 897次阅读

    基于3D打印折纸压力传感器阵列的无线压力监测系统

    在这项研究工作中研究人员采用了双喷嘴熔融沉积建模(FDM)3D打印技术。这种方法能够单步工艺同时打印出柔性传感器的
    发表于 04-10 11:06 301次阅读
    基于<b class='flag-5'>3D</b>打印折纸压力传感器阵列的无线压力监测系统

    新质生产力探索| AICG浪潮3D打印与3D扫描技术

    随着技术的不断进步,3D打印和3D扫描已经成为现代制造业和设计领域的重要工具。为了深入探讨这些技术的最新发展和应用前景。蘑菇云创客空间举办了以《AICG浪潮的新质生产力》为主题的开放
    的头像 发表于 04-01 09:28 398次阅读

    基于扭曲纤维的3D螺旋微流控器件制造

    三维(3D)螺旋微流控技术的发展为利用惯性聚焦分析小体积液体开辟了新的途径,从而推进了化学、物理和生物学科的发展。
    的头像 发表于 02-22 09:37 598次阅读
    基于扭曲纤维的<b class='flag-5'>3D</b>螺旋微流控器件<b class='flag-5'>制造</b>

    秒懂鸿蒙OS 生物特征识别

    2D 人脸识别、3D 人脸识别两种人脸识别能力,设备具备哪种识别能力,取决于设备的硬件能力和技术实现。3D 人脸识别技术识别率、防伪能力都优于 2D 人脸识别技术,但具有
    的头像 发表于 01-29 16:26 3646次阅读

    优可测为3D打印行业助力:重新定义制造业的未来

    3D打印又称“增材制造”、“三维打印”、“积层制造”,是快速成型技术的其中一种,是通过逐层打印的方法制造物体的先进技术。随着科技的不断发展和创新,3
    的头像 发表于 01-19 08:31 498次阅读
    优可测为<b class='flag-5'>3D</b>打印行业助力:重新定义<b class='flag-5'>制造</b>业的未来

    用于生物组织-电子接口的水响应性自适应可拉伸电极

    柔性可拉伸电极是监测人体生理信息的核心工具。由于生物组织柔软,形状和尺寸各不相同,柔性可拉伸电极与生物
    的头像 发表于 12-28 17:30 1024次阅读
    用于<b class='flag-5'>生物</b><b class='flag-5'>组织</b>-电子接口的水响应性自适应可拉伸电极

    3D人体生成模型HumanGaussian实现原理

    3D 生成领域,根据文本提示创建高质量的 3D 人体外观和几何形状对虚拟试穿、沉浸式远程呈现等应用有深远的意义。传统方法需要经历一系列人工制作的过程,如
    的头像 发表于 12-20 16:37 1555次阅读
    <b class='flag-5'>3D</b><b class='flag-5'>人体</b>生成模型HumanGaussian实现原理