0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

常温超导实现对半导体有何意义?

中科院半导体所 来源:半导体行业观察 2023-08-17 10:18 次阅读

最近,随着韩国团队公布据称具有常温超导潜力的LK-99材料以及其制备方法后,在全世界的科研界掀起了一阵旋风,各个团队都试图从实验和理论角度证实(或者证伪)LK-99的常温超导特性。

LK-99成为全球科研界关注焦点的主要原因在于常温超导如果真的实现,将会使得超导的实现门槛大大降低,从而让诸多基于超导的应用得到广泛应用。而在这些基于超导的应用中,和半导体行业关系最大的,可谓就是量子计算机了。

量子计算机和常规计算机的主要不同在于,常规计算机中每一个数字位仅仅代表1bit信息,该数字位要么是0,要么是1。所有基于常规计算机(图灵机)的算法也是基于这样的假设去设计的,而事实上这样的假设带来了一些计算上的限制,这也导致了许多重要的问题使用图灵机的算法求解无法在合理的时间内完成计算。这其中就包括了一系列科学计算问题(例如化合物性质模拟,量子过程模拟等),最优化问题(例如最短路径以及交通最优规划等)以及解密计算等。

这些问题通常称之为NP问题,即使用图灵机无法在多项式时间复杂度之内完成计算的问题(一般认为在计算时间与计算规模之间呈多项式关系的问题都是可以在可控时间内完成计算,而如果计算的时间与计算规模呈指数关系那么就无法在合理的时间内完成计算了)。

为了解决这些常规图灵机无法在合理时间内完成计算的问题,量子计算机就应运而生了。量子计算机中,不再使用畅通的数字位,而是使用量子位(qubit)。量子位和传统的数字位最大的不同在于量子位可以实现状态叠加,即一个量子位可以同时处于0状态或者1状态,而仅仅在读出结果的时候会根据各个状态的概率分布回归到1或者0。因此,利用量子位这样神奇的特性,量子计算机可以在多项式时间内完成一系列NP问题的求解,从而在需要使用NP算法的重要领域(包括前面提到的科学计算和最优化问题)中发挥极其重要的作用,让之前无法精确求解的问题能完成精确求解。

目前,已经有谷歌、IBM、IMEC等全球顶尖的科研机构完成量子计算机原型机的制备,而在这些主流的量子计算机中,量子位都是通过超导实现的。具体的原理是,量子位使用超导LC谐振网络实现,这样的超导LC网络在约瑟夫森效应的作用下将会有量子化的能量状态,从而能表征量子化的0和1。

在常温超导出现之前,超导需要的温度很低(通常非常接近绝对零度,例如10mK级别),在这样的条件下量子计算机需要巨大的冷却设备,从而限制了量子计算机的发展和普及;因此如果常温超导真正实现,将会成为该领域重要的推动力。

超导量子计算机芯片设计

众所周知,目前计算机架构中的主要组成部分(包括处理器,存储器)都由半导体芯片实现,而在使用超导的量子计算机中,也离不开半导体芯片。

如前所述,量子位可以由超导LC谐振电路实现,而对于量子位的控制则可以通过给超导LC电路注入不同的激励信号来实现。具体来说,会需要给量子位的LC谐振电路注入交流信号(XY)和直流信号(Z)。交流信号通常是一个经过调制的脉冲,而直流信号则需要能完成精确控制幅度。这样的量子位控制经由基于半导体的ASIC芯片来实现。

04017ab4-3c1d-11ee-9e74-dac502259ad0.png

在量子位控制ASIC中,芯片要实现的主要功能是高信噪比的信号调制:其中XY通路需要产生脉冲,而Z通路则主要是直流信号。事实上,这样的需求在目前的无线通信应用中已经非常常见,因此量子位控制ASIC的电路设计事实上和射频电路也很类似。

举例来说,谷歌的量子计算团队在今年的ISSCC上发布了其最新一代的量子位控制ASIC电路设计。XY通路方面,电路架构和射频芯片中的IQ调制发射器很接近:首先在基带使用数模转换电路(DAC)将数字信号转换为模拟基带信号,然后模拟基带信号再通过上变频电路变频到射频频率(通常是5-7 GHz范围),并且用这样的射频调制信号去控制XY通路。

041cc04e-3c1d-11ee-9e74-dac502259ad0.png

在Z通路方面,由于需要精确控制Z的直流值,电路可以使用数模转换电路将数字控制信号直接转换成相应的模拟信号。

043df9a8-3c1d-11ee-9e74-dac502259ad0.png

由此可见,量子计算离不开半导体芯片来控制量子位,这样的控制是通过产生调制脉冲信号或者直流信号来完成的,这样的过程和无线通信很接近,因此主流的量子位控制电路和无线通信中的射频电路也很接近。

量子位控制芯片的挑战

量子位控制芯片设计可以参照目前已有的射频电路,但是也有自己的挑战。

046628ba-3c1d-11ee-9e74-dac502259ad0.png

清华大学团队研发的低温超导量子计算机量子位控制芯片,发表在ISSCC 2023上

首先,目前的超导都需要在几乎是绝对零度的温度下工作,考虑到制冷设备,量子位控制芯片也需要在接近绝对零度的条件下工作(3-4 K)。但是,目前主流芯片设计PDK中的晶体管建模的低温范围仅仅覆盖到零下40度(即233 K),离量子位控制芯片需要的3-4 K相距甚远。

如果没有好的PDK建模,势必会对量子位控制芯片设计带来挑战。PDK第一步需要解决基本建模的问题,即在如此低的温度条件下,一个典型的晶体管行为(包括电流、噪声、非线性等)是如何的。在完成基本建模之后,PDK还必须要提供低温条件下晶体管行为的统计建模,包括晶体管的mismatch、不同工艺角下的晶体管性能差异,而如果要进一步扩大量子计算机的规模,需要使用更大的量子位控制芯片,那么大规模芯片上的片上工艺差异建模也会变得重要。这一步将会是量子位控制芯片进入量产的重要一步。

目前,超导量子计算机以及相关芯片的设计主要由高校以及科技公司(例如谷歌、IBM)的相关研究部门主导,常用的半导体芯片工艺是成熟的28nm。为了让超导量子计算机真正进入量产,半导体行业的相关公司(包括EDA、代工厂等)也必须能有相应的动作。在这个方向,Synopsis已经和英国的其他六个高校研究机构组成了一个低温芯片研发团队,其中由Synopsis提供基于TCAD的EDA能力,帮助完成低温半导体相关的建模工作,目标是能够在未来提供经过验证的低温半导体芯片IP,从而加速整个超导量子计算机的研发。

除了低温之外,量子位控制芯片的噪声和非线性性能也很重要:量子位的一个关键指标就是保真度(fidelity),为了实现量子位数量的提升,每个量子位的保真度都必须做到99.9%或者更高,否则量子计算机会由于每个量子位保真度不够而无法完成有效的计算;而量子位的保真度和量子位控制芯片的噪声和非线性性能息息相关。由于量子位控制芯片和射频芯片架构相似,因此在射频芯片中出现的噪声和非线性问题也会同样出现在量子位控制芯片中。为了确保保真度达到标准,量子位控制芯片的信噪比(SDR)要到达35dB以上,这就需要量子位控制芯片中的每个模块(例如DAC、LO等)都有很好的噪声和线性度,同时从架构角度也要保证LO泄漏等指标要足够低。

最后,从冷却角度考虑,量子位控制芯片的功耗也不能太大。在低温超导计算机中,量子位控制芯片的功耗如果太大,则其散发的热量会超过冷却设备的能力范围,从而让超导量子位的温度过高而无法真正工作在超导状态。通常来说,需要量子位控制芯片的功耗控制在10-20 mW/qubit以下来满足温度控制的需求。

0483f4da-3c1d-11ee-9e74-dac502259ad0.png

常温超导若实现,将推动量子位控制芯片快速发展

前述的超导量子计算机和量子位控制芯片都需要工作在接近绝对零度温度范围里,而如果常温超导(例如LK-99的超导性真正被验证)实现并且可以用来制造量子位的话,超导量子计算机可望会获得跨越式发展。在常温超导的条件下,目前量子计算机中需要的超低温冷却设备就无须再使用,这就大大降低了量子计算机制备的门槛,让更多机构有机会能加入量子计算机的研发工作。

从另一个角度来看,即使超导的门槛降低了,但是对于量子位控制芯片的需求并没有变低:目前量子计算机的一个重要瓶颈就是量子位和相关处理的保真度,因此量子位控制芯片的性能至关重要。如果LK-99这样的常温超导真的变成现实且使用在量子计算机里面,我们预计对于量子计算机芯片有如下影响:

如果量子位控制芯片可以在常温下工作,这对于相关芯片器件建模的要求降低了(即可以使用已经经过大量验证的常温PDK来实现设计),另外对于量子位控制芯片的功耗要求也可会更宽松一些(由于只需控制在常温下工作,因此散热的需求降低了)

超导量子计算机性能提升的需求会大幅加快,在这个角度来看量子位保真度需求更高了(例如如果需要把量子位数量提升到上千个,则保真度可能99.9%已经不够用,需要到99.99%甚至99.999%),这就对于量子位控制芯片的性能提出了更高的需求:信噪比,线性度等等都需要大幅提高来满足需求

最后,量子位控制芯片的电路设计会进一步进化,来满足量子计算机的需求。量子位控制芯片会进一步从无线通信芯片电路的已有研究中获取灵感,同时也会需要能够解决自己独特的挑战。随着越来越多的科研团队关注超导量子计算,预计该领域会成为芯片电路研究领域一个新的热门方向。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19156

    浏览量

    229092
  • 存储器
    +关注

    关注

    38

    文章

    7452

    浏览量

    163594
  • 谐振器
    +关注

    关注

    4

    文章

    1131

    浏览量

    65857
  • 量子计算机
    +关注

    关注

    4

    文章

    527

    浏览量

    25371
  • 计算机芯片
    +关注

    关注

    0

    文章

    42

    浏览量

    3500

原文标题:超导,对半导体意味着什么?

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ESD静电对半导体制造的影响

    半导体制造业是一个高度精密和复杂的行业,它依赖于先进的技术和严格的生产控制来制造微型电子元件。在这个过程中,静电放电(ESD)是一个不可忽视的问题,因为它可能对半导体器件的性能和可靠性产生重大
    的头像 发表于 11-20 09:42 118次阅读

    请问PCM2912AE2PJTR与PCM2912APJTR,两个型号尾缀不同之处(E2)有何意义及差别?

    请问PCM2912AE2PJTR与PCM2912APJTR,两个型号尾缀不同之处(E2)有何意义及差别?急需解答迷津,不胜感激
    发表于 10-28 08:10

    半导体PN结的形成原理和主要特性

    半导体PN结的形成原理及其主要特性是半导体物理学中的重要内容,对于理解半导体器件的工作原理和应用具有重要意义。以下是对半导体PN结形成原理和
    的头像 发表于 09-24 18:01 647次阅读

    气敏电阻是半导体还是超导体

    气敏电阻是一种特殊的电阻器,其电阻值会随着周围气体成分的变化而变化。这种特性使得气敏电阻在气体检测和环境监测等领域有着广泛的应用。气敏电阻通常由半导体材料制成,而不是超导体超导体是指在特定温度下
    的头像 发表于 09-19 14:12 373次阅读

    超导半导体有关系吗为什么

    引言 超导半导体是现代物理学中两个重要的概念。超导现象是指某些材料在低于临界温度时电阻突然降为零的现象,而半导体则是介于导体和绝缘体之间的
    的头像 发表于 07-31 09:23 875次阅读

    导体半导体超导体有什么区别和联系

    导体半导体超导体是三种不同的物质状态,它们在电导率、电阻率、电子结构和应用领域等方面存在显著差异。以下是对这三种物质状态的比较和联系的分析。 一、导体 定义:
    的头像 发表于 07-31 09:18 2058次阅读

    导体超导体哪个导电性最好

    地传导电流的材料,而超导体则在特定条件下能够实现零电阻的电流传输。本文将详细探讨这两种材料的导电性,以及它们在实际应用中的差异和潜力。 第一部分:导体的导电性 1.1 导体的定义
    的头像 发表于 07-31 09:17 624次阅读

    超导体的导电性能介于导体和绝缘体之间吗

    超导体是一种特殊的材料,其电阻在低于某一临界温度时突然降为零,表现出零电阻的特性。这种特性使得超导体在许多领域具有重要的应用价值,如磁共振成像(MRI)、粒子加速器、磁悬浮列车等。然而,超导体
    的头像 发表于 07-31 09:10 509次阅读

    常温超导材料在军事领域中的潜在应用探索

    超导约瑟夫森结是超导量子计算机的基本元件,在两块超导体之间夹入一个很薄的绝缘层,这一结构通过约瑟夫森效应实现量子计算机所需的量子比特的量子态,从而使
    的头像 发表于 03-06 12:27 604次阅读

    超导体“突破”

    来源:Silicon Semiconductor Ambature宣布其位于安大略省滑铁卢的实验室成功在硅上生长高温超导材料(a轴YBCO)。 这种独特的YBCO可以在半导体铸造厂中更简单地制造
    的头像 发表于 02-01 15:45 277次阅读

    韩国超导学会确认LK-99未发现常温超导证据

    该组织表示,两篇刊文所述电阻及磁化率测量数据皆未能揭示出超导体的零电阻和迈斯纳效应特性。且经过首尔大学等韩国八个实验室按照文献方法进行的多次再现实验后,均无法复现超导现象。
    的头像 发表于 12-14 15:39 601次阅读

    常见的几种功率半导体器件

    半导体是我们生活中使用的电器里比较常用的一种器件,那么你对半导体有多少了解呢?今天我们就从最基础的半导体功率器件入手,全面了解半导体的“前世今生”。
    的头像 发表于 12-14 09:25 1139次阅读

    哪些因素会给半导体器件带来静电呢?

    根据不同的诱因,常见的对半导体器件的静态损坏可分为人体,机器设备和半导体器件这三种。 当静电与设备导线的主体接触时,设备由于放电而发生充电,设备接地,放电电流将立即流过电路,导致静电击穿。外部物体
    发表于 12-12 17:18

    什么是超导体

    什么是超导体超导体是指在低温下具有零电阻和完全电磁排斥的材料。它们具有许多特殊的电磁性质,使得它们在许多领域有广泛的应用。本文将详细介绍超导体的基本原理、关键特性以及常见的应用。 超导
    的头像 发表于 11-29 16:15 1804次阅读

    光纤防尘有何意义?如何做到更有效的光纤防尘?

    光纤防尘有何意义?如何做到更有效的光纤防尘? 光纤防尘是指采取一系列措施来保护光纤免受尘埃和污染物的影响。光纤传输是现代通信和网络领域的关键技术,光纤防尘对于保持光纤传输质量和稳定性具有至关重要
    的头像 发表于 11-28 14:34 618次阅读