0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

边缘计算计算卸载与资源分配联合优化算法

AI智胜未来 来源:中国指挥与控制学会 2023-08-18 11:25 次阅读

来源:中国指挥与控制学会

作者:CICC

摘要

针对后勤资产管理系统“本地—云”结构的不足,设计了边缘计算卸载决策与资源分配服务联合优化算法,将原始数据解算任务卸载至边缘端,提供更优卸载决策与资源分配方式。根据任务、计算能力、功率等信息建立时延能耗系统代价模型,基于二分法、拉格朗日乘子法、改进的粒子群算法完成问题的求解,实现多用户多节点有云参与的联合迭代寻优。实验结果表明,该方法有效降低系统总代价,降低Random算法总代价的59.34%,Greedy算法的45.74%,STPSO算法的24.07%。

固定资产管理是企事业单位中一项非常严肃,政策性、原则性、技术性很强的后勤工作,它将把控资产信息、提高管理效率、降低支出成本作为管理目标,提升了企业的资产管理水平[1]。早在2020年,财政部发布了《关于加强行政事业单位固定资产管理的通知》,来加强事业单位的后勤资产管理水平。除此之外,我国在军事后勤建设的投入逐年增加,后勤工作会议指出:加快建设现代军事物流体系和军队现代资产管理体系[2]。无论军事还是民用,后勤资产管理建设都是现阶段发展重点,必须探索出一条能够推进后勤资产管理工作向现代化和智能化方向发展的道路,引领我国后勤资产管理实力迈向新台阶。

我国资产管理经历手工记账、二三维条码的发展过程,形成了信息化管理系统。由于资产管理特殊性,现有系统普遍存在以下问题:精细化程度低、平台功能有限;资产辨认与定位难、可视化程度低;编码体系不统一、编码覆盖信息不全[3]。因此,结合传感定位、网格剖分、实时监控等技术,建设统一后勤资产业务管理平台,实现可以为全天候、全地域环境提供精细化保障的“可视化后勤”,是现代后勤建设的主要目标[4]。

专家学者对相关技术开展研究来提升资产管理系统服务水平。LIN Y完成了基于射频识别的仓库研究与实践物流管理系统设计,针对仓储管理中手工作业多、效率低的问题,设计了基于射频识别(radio frequency identification,RFID)仓库自动化解决方案,满足大型仓储企业需求[5]。WANG T等利用RFID技术建立基于物联网技术的固定资产管理平台,实现合理高效使用和部署固定资产,优化和简化管理过程,确保得到可靠和完整的资产数据[6]。LEE C等提出了一种基于蓝牙定位用于跟踪资产的室内定位系统,实现一种经济高效的资产管理解决方案[7]。

应用北斗网格剖分技术解算资产位置构建统一定位编码标准,基于RFID系统、北斗定位系统、摄像头等设备采集资产数据,利用软件及数据库技术实现具备实时监控与资产可视化功能的先进资产管理系统。在后勤资产管理系统发展过程中,传统系统构架直接将企业管理系统连接至后勤云计算中心,随着接入硬件设备逐渐增多,大量原始数据未经过解算全部上传至云端会占用更多的带宽和服务器资源,给系统的运维带来极大资源负担,也不利于对资产环境视频监控画面进行实时调取,在一定程度上影响用户体验,限制了后勤资产管理系统向现代化发展[8]。

云计算、联邦学习、边缘计算等分布式计算技术被提出用于协调共享资源的使用,边缘计算具有实时性高、计算能力强、带宽高、安全性高等优点,在众多通信新技术中脱颖而出[9]。在系统构架中引入边缘层,能在数据源头实现定位、RFID标签等原始数据的及时处理与响应,向云端直接传输解码结果减少数据传输消耗。同时边缘计算及多码流处理技术的结合运用,也为实时视频监控需求提供了解决方案,能够提高视频图像数据价值,降低带宽与时延,提高处理效率。

边缘计算技术核心是基于分布式边缘服务器,在数据源头提供具有网络、计算、存储等功能的服务器节点,完成被卸载的计算任务,经过资源分配等步骤将结果返回设备端[10]。为了提升技术服务性能,本文针对边缘计算服务模型中资源分配、计算卸载两项业务开展研究,优化调度模型、寻找更佳的控制策略来提供最优服务。

相关专家也对边缘计算计算卸载以及资源分配等问题开展相关研究,SONG H K等研究了无线边缘网络中边缘计算服务器部署和用户卸载关联的网络,设计了一种改进遗传算法来解决该问题,有效减少平均服务延迟[11]。TANG C G等提出了一个通用的支持缓存的车载边缘计算方案,同时考虑任务缓存带来的响应延迟和能耗,同其他算法相比具有优势性[12]。XU F等提出了两阶段计算卸载算法,能够有效降低时延[13]。黄冬晴等提出一种面向多用户的联合计算卸载和资源分配策略,利用拉格朗日乘子法获得最佳计算资源分配,基于贪心算法获得最佳卸载决策,不断迭代降低系统成本[14]。

目前许多专家对资产管理系统进行优化,开展边缘计算技术业务研究,但大多针对单一目标进行优化设计。也有不少专家对单一业务进行多目标优化,例如针对卸载决策或资源分配问题进行时延能耗多目标优化。随着研究不断深入,逐渐向多业务联合优化方向发展,也提出了计算卸载和资源分配联合优化的概念,通过不断迭代两个业务问题的求解获得更优解。由于联合优化计算过程复杂,现有论文一般采用复杂度较低的算法来求解卸载决策计算问题,例如文献[14]采用贪心算法计算。因此,本文研究计算卸载和资源分配问题,基于数学推导解决计算资源分配问题,基于进化类算法计算卸载决策,迭代计算联合优化时延和能耗两个目标,得到最优控制策略。

e0a26318-3d01-11ee-ac96-dac502259ad0.png

e0add5c2-3d01-11ee-ac96-dac502259ad0.png

e10d7e78-3d01-11ee-ac96-dac502259ad0.png

e1768562-3d01-11ee-ac96-dac502259ad0.png

e1cf59d0-3d01-11ee-ac96-dac502259ad0.png

e1ff42f8-3d01-11ee-ac96-dac502259ad0.png

e20a526a-3d01-11ee-ac96-dac502259ad0.png

e24c486e-3d01-11ee-ac96-dac502259ad0.png

e2c7b12a-3d01-11ee-ac96-dac502259ad0.png

e350e5e4-3d01-11ee-ac96-dac502259ad0.png

e394dee8-3d01-11ee-ac96-dac502259ad0.png

e3a3ebfe-3d01-11ee-ac96-dac502259ad0.png

e401c616-3d01-11ee-ac96-dac502259ad0.png

e46c14e4-3d01-11ee-ac96-dac502259ad0.png

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • RFID
    +关注

    关注

    387

    文章

    6119

    浏览量

    237514
  • 云计算
    +关注

    关注

    39

    文章

    7743

    浏览量

    137240
  • 算法
    +关注

    关注

    23

    文章

    4604

    浏览量

    92710
  • 边缘计算
    +关注

    关注

    22

    文章

    3071

    浏览量

    48708

原文标题:边缘计算计算卸载与资源分配联合优化算法

文章出处:【微信号:AI智胜未来,微信公众号:AI智胜未来】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    小蜂窝云中功率与负载优化分配算法

    移动终端资源有限及本地服务基站资源不足会引起移动终端体验质量降低、卸载任务时延长的问题。为此,提出一种新的联合优化分配
    发表于 01-26 14:59 0次下载
    小蜂窝云中功率与负载<b class='flag-5'>优化分配</b><b class='flag-5'>算法</b>

    如何在增强现实场景下进行移动边缘计算资源分配优化方法说明

    ,建立以最小化系统消耗总能量为优化目标的约束条件;最后,在保障延迟和功耗满足约束的条件下,建立了基于凸优化的移动边缘计算(MEC)资源
    发表于 03-27 13:39 19次下载
    如何在增强现实场景下进行移动<b class='flag-5'>边缘</b><b class='flag-5'>计算</b><b class='flag-5'>资源</b><b class='flag-5'>分配</b><b class='flag-5'>优化</b>方法说明

    增强现实场景下移动边缘计算资源分配优化方法详细说明

    ,建立以最小化系统消耗总能量为优化目标的约束条件;最后,在保障延迟和功耗满足约束的条件下,建立了基于凸优化的移动边缘计算(MEC资源
    发表于 07-21 17:31 6次下载
    增强现实场景下移动<b class='flag-5'>边缘</b><b class='flag-5'>计算</b><b class='flag-5'>资源</b><b class='flag-5'>分配</b><b class='flag-5'>优化</b>方法详细说明

    移动边缘计算资源分配策略及其实验

      为在移动边缘计算服务器计算资源有限的情况下最小化系统总成本,提出一种多用户卸载决策与资源
    发表于 03-11 10:20 9次下载
    移动<b class='flag-5'>边缘</b><b class='flag-5'>计算</b>的<b class='flag-5'>资源</b><b class='flag-5'>分配</b>策略及其实验

    一种基于用户体验的计算卸载方案

    时延和能耗增益率的加权和表示用户效用,同时考虑用户设备的续航能力,构造基于用户需求的自适应权重因子。在此基础上,将原优化问题拆分为资源分配卸载决策两个子问题分别进行求解,得到最终的
    发表于 03-19 15:49 17次下载
    一种基于用户体验的<b class='flag-5'>计算</b><b class='flag-5'>卸载</b>方案

    一种基于单时隙的资源分配算法

    移动边缘计算(MEC)通过将计算和存储资源部署在无线网络边缘,使得用户终端可将计算任务
    发表于 03-19 17:15 32次下载
    一种基于单时隙的<b class='flag-5'>资源</b><b class='flag-5'>分配</b><b class='flag-5'>算法</b>

    一种云辅助移动边缘计算计算卸载策略

    移动边缘计算通过将计算资源迁移至网络边缘来降低时延并缩减能耗,相比云计算
    发表于 03-24 17:16 23次下载
    一种云辅助移动<b class='flag-5'>边缘</b><b class='flag-5'>计算</b>的<b class='flag-5'>计算</b><b class='flag-5'>卸载</b>策略

    一种基于博弈论的移动边缘计算功率分配算法

    进一步降低延迟和能量消耗,针对移动边缘计算卸载系统,提出基于博弈论的功率分配算法。在服务器计算
    发表于 04-02 10:19 22次下载
    一种基于博弈论的移动<b class='flag-5'>边缘</b><b class='flag-5'>计算</b>功率<b class='flag-5'>分配</b><b class='flag-5'>算法</b>

    基于遗传算法的多边缘与云端协同计算卸载模型

    collaborativeComputing Offloading Model, GAMCCOM)。该计算卸载方案联合本地边缘和异地边缘
    发表于 04-19 14:55 9次下载
    基于遗传<b class='flag-5'>算法</b>的多<b class='flag-5'>边缘</b>与云端协同<b class='flag-5'>计算</b><b class='flag-5'>卸载</b>模型

    车载边缘计算服务器联合计算任务卸载方案

    的移动性和区域部署的差异性易导致VEC服务器负载不均衡,造成了计算卸载效率和资源利用率降低。为解决该问题,提岀一种计算卸載和资源
    发表于 04-19 14:57 12次下载
    车载<b class='flag-5'>边缘</b><b class='flag-5'>计算</b>服务器<b class='flag-5'>联合计算</b>任务<b class='flag-5'>卸载</b>方案

    面向优先级任务的移动边缘资源分配方法

    目前移动边缘计算中的资源分配方法,多数按照任务请求计算卸载的时间顺序
    发表于 05-12 11:38 4次下载

    车辆边缘计算的任务卸载研究综述

    计算密集和延迟敏感型车辆应用的岀现对车辆设备有限的计算能力提出了严峻的挑战,将任务卸载到传统的云平台会有较大的传输延迟,而移动边缘计算专注于
    发表于 06-01 15:38 16次下载

    资源受限的移动边缘计算系统中计算卸载问题研究

    摘要:本文针对边缘计算卸载问题,提出了两个创新点,并进行建模,在模拟实验中都得到了最好的结果。一是在用户-MEC-云端架构中,设计了对计 算结果缓存,流行的计算结果进行缓存,再次请求
    发表于 05-18 15:51 0次下载
    <b class='flag-5'>资源</b>受限的移动<b class='flag-5'>边缘</b><b class='flag-5'>计算</b>系统中<b class='flag-5'>计算</b><b class='flag-5'>卸载</b>问题研究

    移动边缘计算MEC学习笔记

    移动边缘计算(MEC,mobileedgecomputing)中计算卸载技术即 将移动终端的计算任务卸载
    发表于 05-18 16:39 0次下载
    移动<b class='flag-5'>边缘</b><b class='flag-5'>计算</b>MEC学习笔记

    边缘计算那些事儿--边缘卸载技术

    前面笔者有对边缘计算系统做过一次综述,从本文开始,笔者将重点解读边缘计算技术栈,首先介绍的是边缘计算
    发表于 05-18 16:40 0次下载
    <b class='flag-5'>边缘</b><b class='flag-5'>计算</b>那些事儿--<b class='flag-5'>边缘</b><b class='flag-5'>卸载</b>技术