0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ChatGLM2-6B解析与TPU部署

jf_pJlTbmA9 来源:jf_pJlTbmA9 作者:jf_pJlTbmA9 2023-08-18 11:28 次阅读

概述#

算能BM1684X芯片已经实现ChatGLM2-6B的C++代码部署,代码实现链接:https://github.com/sophgo/ChatGLM2-TPU。

本文总结部署该模型过程中的一些技术点。首先是ChatGLM2-6B的整体运行流程,然后介绍如何将该动态网路转换成静态网络形式,接着介绍如何将该模型导出成ONNX。

最后如何将ONNX使用TPU-MLIR编译器实现网络的编译以及用C++代码编写应用程序,可以直接看源码就可以理解,这里不做介绍。

ChatGLM2-6b运行流程#



wKgaomTeyYuAGAEHAAOdqNVoTSg583.png

如图该网络基本上可以分为5个阶段:

将句子通过分词器(使用google的sentencepiece)转换成tokens,如图中的<1x17 xi32>的数据。注意tokens里面64790, 64792是起始符号。

通过WordEmbedding将tokens转换成词向量,得到的结果是<1x17x4096 xf32>的数据。

通过Tranformer进行神经网络推理,推理结果是<1x17x4096 xf32>,答案在最后的词向量上,所以做一个额外的slice操作,得到<1x1x4096 xf32>。这里Transformer网络是由28个Block组成,每个Block的核心是一个Attention运算,并输出kv cache给下一轮Transform做为输入。

经过LmHead操作生成<1x1 xi32>的结果,也就是输出的Token。LmHead的组成如图所示。

Token经过分词器转成词语,且传递给下一轮推理,进入第一阶段。直到token == EOS_ID结束。

转成静态网络#

ChatGLM2-6B从前面的描述中,可以看到有两处是动态的,一是因句子的长短不同,Transformer的输入Shape有所有不同;二是每一轮Transformer生成的kv cache会逐步增长。为了方便部署,根据网络特点转换成静态网络。转换后的运行流程如下:

wKgZomTeyY6AFQEgAAW1_ICPg_Q001.png

从图中可以看到句子不论长短,转换后的tokens始终是<1x512x i32>,kv cache的数据也始终是<512x1x2x128x f32>。

这里介绍最关键的几点:

将原始tokens输入尾部补0,从<1x17x i32>转换成<1x512x i32>。

将position_ids从GlmBlock中提取出来,并固定长度为<1x512x i32>,也是尾部补0,本例中的数值为[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,0,0,0,0,...0],用于位置编码。因为在原始网络中这部分是变长,提取出来后就可以做成定长。

将attention_mask从GlmBlock中提取出来,并固定长度为<1x512x512x f32>,注意无效部分全部补1,因为它之后会有masked_fill操作将mask为1的部分全部配置为-inf。然后经过Softmax使超出部分全部清0,保留有效部分,从而保证最终结果与原始结果一致。如下图,为说明问题,Attention做了简化。

wKgaomTeyZKAcEiQAANk81R4E_M592.png

第一轮Transformer后,kv_chache有效部分是[0:17],我们将该部分移到末尾[512-17:],并头部清0。因为kv cache的累加发生在尾部。从第二轮开始累加后做Slice操作去掉头部1个单位,取[1:],这样就保证了kv cache始终保持在512。同时attention mask也要是从尾部实际token len长度的0,头部全部置1。

导出ONNX#

将该网络分为4块:WorkEmbedding,GlmBlock,GlmBlockCache,LmHead。这里分别介绍这四块是如何导出的。

导出前,先要指定python路径,如下:

1
export PYTHONPATH=/workspace/chatglm2-6b:$PYTHONPATH

需要先加载原始ChatGLM2-6B,如下代码:

1
2
3
4
5
6
7
8
9
10
11
CHATGLM2_PATH = "/workspace/chatglm2-6b"

origin_model = AutoModel.from_pretrained(CHATGLM2_PATH,
                                         trust_remote_code=True).float()
origin_model.eval()
transformer = origin_model.transformer
MAX_LEN = transformer.seq_length
for param in origin_model.parameters():
    param.requires_grad = False
num_layers = transformer.encoder.num_layers
layers = transformer.encoder.layers

WorkEmbedding#

直接使用原模型中的word_embeddings,构建成独立网络,导出即可

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Embedding(torch.nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, input_ids):
        return transformer.embedding.word_embeddings(input_ids)

def convert_embedding():
    model = Embedding()
    torch.onnx.export(model, (torch.tensor([0, 1, 2, 3])),
                      f'./tmp/embedding.onnx',
                      verbose=False,
                      input_names=['input_ids'],
                      output_names=['input_embed'],
                      dynamic_axes={"input_ids": {0: "length"}},
                      do_constant_folding=True,
                      opset_version=15)

GlmBlock#

需要将transformer.rotary_pos_emb和transformer.encoder.layers组合构建独立网路,导出。因为有28个block,所以需要导出28个ONNX模型。这里的position_ids和attention_mask作为外部输入,前面有介绍。其实这28个Block是可以组合成一个模型,但是这样导致onnx权重过大(F16约12GB),导出麻烦,部署也麻烦,所以单个导出。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class GlmBlock(torch.nn.Module):

    def __init__(self, layer_id):
        super().__init__()
        self.layer = layers[layer_id]

    def forward(self, hidden_states, position_ids, attention_mask):
        rotary_pos_emb = transformer.rotary_pos_emb(MAX_LEN)[position_ids]
        rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
        hidden_states, past_kv = self.layer(hidden_states, attention_mask,
                                            rotary_pos_emb=rotary_pos_emb)
        return hidden_states, past_kv

def convert_glm_block(layer_id):
    model = GlmBlock(layer_id)
    torch.onnx.export(
        model, (hidden_states, position_ids, attention_mask),
        f'./tmp/glm_block_{layer_id}.onnx',
        verbose=False,
        input_names=['input_states', 'position_ids', 'attention_mask'],
        output_names=['hidden_states', 'past_k', 'past_v'],
        do_constant_folding=True,
        opset_version=15)

GlmBlockCache#

与`GlmBlock是类似的,但是需要额外的kv cache参数。注意这里 最后会把头部1个单位去除掉。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class GlmBlockCache(torch.nn.Module):
    def __init__(self, layer_id):
        super().__init__()
        self.layer = layers[layer_id]

    def forward(self, hidden_states, position_ids, attention_mask, past_k, past_v):
        rotary_pos_emb = transformer.rotary_pos_emb(MAX_LEN)[position_ids]
        rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
        hidden_states, past_kv = self.layer(hidden_states, attention_mask,
                                            kv_cache=(past_k, past_v),
                                            rotary_pos_emb=rotary_pos_emb)
        past_k, past_v = past_kv
        return hidden_states, past_k[1:], past_v[1:]

def convert_glm_block_cache(layer_id):
    model = GlmBlockCache(layer_id)
    torch.onnx.export(
        model, (hidden_states, position_ids, attention_mask, past_k, past_v),
        f'./tmp/glm_block_cache_{layer_id}.onnx',
        verbose=False,
        input_names=['input_states', 'position_ids', 'attention_mask', 'history_k', 'history_v'],
        output_names=['hidden_states', 'past_k', 'past_v'],
        do_constant_folding=True,
        opset_version=15)

LmHead#

这里取m_logits后使用topk,其实也是可以用argmax,看芯片实现哪一种效率高。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class LmHead(torch.nn.Module):
    def __init__(self):
        super().__init__()
    def forward(self, hidden_states):
        hidden_states = transformer.encoder.final_layernorm(hidden_states)
        m_logits = transformer.output_layer(hidden_states)
        _, token = torch.topk(m_logits, 1)
        return token
def convert_lm_head():
    model = LmHead()
    input = torch.randn(1, 4096)
    torch.onnx.export(model, (input), f'./tmp/lm_head.onnx', verbose=False,
                      input_names=['hidden_states'],
                      output_names=['token'],
                      do_constant_folding=True,
                      opset_version=15)

部署#

上述转完ONNX模型后都已经是静态网络,通过TPU-MLIR,可以很容易的转换成F16的模型。但是特别要注意的是RmsNorm需要用F32。之后就可以按照执行逻辑编写C++代码。演示效果如下:

wKgZomTeyZmAfYNvAAyggAMVdCw548.png

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    453

    文章

    50312

    浏览量

    421472
  • 源码
    +关注

    关注

    8

    文章

    632

    浏览量

    29127
  • C++
    C++
    +关注

    关注

    22

    文章

    2104

    浏览量

    73470
  • TPU
    TPU
    +关注

    关注

    0

    文章

    138

    浏览量

    20689
收藏 人收藏

    评论

    相关推荐

    【算能RADXA微服务器试用体验】Radxa Fogwise 1684X Mini 规格

    ChatGLM2-6B、AIGC、Llama2、SAM、Whisper等超大参数模型 还有一份详细的英文的规格表: 另外,算能RADXA微服务器服务器,还是大学生集成电路创新创业大赛之# 第八届集创赛杯赛题目
    发表于 02-28 11:21

    CORAL-EDGE-TPU:珊瑚开发板TPU

    :1 GB LPDDR4闪存:8 GB eMMC无线:Wi-Fi 2x2 MIMO(802.11b / g / n / ac 2.4 / 5GHz)蓝牙4.1尺寸:48mm x 40mm x 5mm
    发表于 05-29 10:43

    TPU透明副牌.TPU副牌料.TPU抽粒厂.TPU塑胶副牌.TPU再生料.TPU低温料

    ,透明.白色.黑色. 改性料. 2.TPU挤出.留延.气动管TPU料、管材TPU料、条TPU料、封边条TPU料、装饰条
    发表于 11-21 17:21

    TPU副牌低温料.TPU热熔料.TPU中温料.TPU低温塑胶.TPU低温抽粒.TPU中温塑料

    清源塑胶公司.供应TPU塑胶原料.副牌.再生颗粒料.TPU塑胶.TPU透明副牌. 再生粒子.白色.黑色.透明. 注塑料.挤出料. 压延等等..聚醚. 脂肪料. 聚酯料.硬度70A--98A. 高硬度
    发表于 11-21 17:33

    供应TPU抽粒工厂.TPU再生工厂.TPU聚醚料.TPU聚酯料.TPU副牌透明.TPU副牌.TPU中低温料

    清源塑胶经营.进口.国内.供应TPU原料.副牌TPU塑胶.TPU透明副牌. 再生粒子.白色.黑色.透明. 注塑料.挤出料. 压延等等..聚醚. 脂肪料. 聚酯料.硬度70A--98A. 高硬度
    发表于 11-21 17:47

    清华系千亿基座对话模型ChatGLM开启内测

    ChatGLM-6B 使用了和 ChatGLM 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 虽然规模不
    的头像 发表于 03-17 13:47 2054次阅读

    ChatGLM-6B的局限和不足

    基于ChatGLM-6B 部署本地私有化ChatGPT 一、开源模型 1、ChatGLM-6B介绍 清华大学知识工程 (KEG) 实验室和智谱AI公司与于2023年共同训练的语言模型
    的头像 发表于 06-25 11:50 5389次阅读
    <b class='flag-5'>ChatGLM-6B</b>的局限和不足

    ChatGLM2-6B:性能大幅提升,8-32k上下文,推理提速42%,在中文榜单位列榜首

    在主要评估LLM模型中文能力的 C-Eval 榜单中,截至6月25日 ChatGLM2 模型以 71.1 的分数位居 Rank 0 ,ChatGLM2-6B 模型以 51.7 的分数位居 Rank
    的头像 发表于 06-26 14:30 957次阅读
    <b class='flag-5'>ChatGLM2-6B</b>:性能大幅提升,8-32k上下文,推理提速42%,在中文榜单位列榜首

    下载量超300w的ChatGLM-6B再升级:8-32k上下文,推理提速42%

    ,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
    的头像 发表于 06-29 16:15 1320次阅读
    下载量超300w的<b class='flag-5'>ChatGLM-6B</b>再升级:8-32k上下文,推理提速42%

    适用于各种NLP任务的开源LLM的finetune教程~

    ChatGLM2-6b是清华开源的小尺寸LLM,只需要一块普通的显卡(32G较稳妥)即可推理和微调,是目前社区非常活跃的一个开源LLM。
    的头像 发表于 07-24 09:04 1681次阅读
    适用于各种NLP任务的开源LLM的finetune教程~

    基于ChatGLM2和OpenVINO™打造中文聊天助手

    ChatGLM 是由清华大学团队开发的是一个开源的、支持中英双语的类 ChatGPT 大语言模型,它能生成相当符合人类偏好的回答, ChatGLM2 是开源中英双语对话模型 ChatGLM 的第二代版本,在保留了初代模型对话流
    的头像 发表于 08-24 17:13 1267次阅读
    基于<b class='flag-5'>ChatGLM2</b>和OpenVINO™打造中文聊天助手

    探索ChatGLM2在算能BM1684X上INT8量化部署,加速大模型商业落地

    |探索ChatGLM2-6B模型与TPU部署》。为了进一步提升模型的推理效率与降低存储空间,我们对模型进行了INT8量化部署,整体性能提升70%以上,模型大小降低到
    的头像 发表于 10-10 10:18 3579次阅读
    探索<b class='flag-5'>ChatGLM2</b>在算能BM1684X上INT8量化<b class='flag-5'>部署</b>,加速大模型商业落地

    ChatGLM3-6B在CPU上的INT4量化和部署

    ChatGLM3 是智谱 AI 和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6BChatGLM3 系列中的开源模型,在填写问卷进行登记后亦允许免费商业使用。
    的头像 发表于 01-05 09:36 855次阅读
    <b class='flag-5'>ChatGLM3-6B</b>在CPU上的INT4量化和<b class='flag-5'>部署</b>

    三步完成在英特尔独立显卡上量化和部署ChatGLM3-6B模型

    ChatGLM3 是智谱 AI 和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6BChatGLM3 系列中的开源模型,在填写问卷进行登记后亦允许免费商业使用。
    的头像 发表于 01-11 18:04 1543次阅读
    三步完成在英特尔独立显卡上量化和<b class='flag-5'>部署</b><b class='flag-5'>ChatGLM3-6B</b>模型

    chatglm2-6b在P40上做LORA微调

    背景: 目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用
    的头像 发表于 08-13 17:12 429次阅读
    <b class='flag-5'>chatglm2-6b</b>在P40上做LORA微调