0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络的介绍 什么是卷积神经网络算法

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:49 次阅读

卷积神经网络的介绍 什么是卷积神经网络算法 卷积神经网络涉及的关键技术

卷积神经网络(Convolutional Neural Network,CNN)是一种用于图像分类、物体识别、语音识别等领域的深度学习算法。CNN模型最早被提出是为了处理图像,其模型结构中包含卷积层、池化层和全连接层等关键技术,经过多个卷积层和池化层的处理,CNN可以提取出图像中的特征信息,从而对图像进行分类。

一、卷积神经网络算法

卷积神经网络算法最早起源于图像处理领域。它是一种深度学习算法,属于人工神经网络的一种。CNN模型的核心思想是特征提取、拟合函数的学习和归一化三个方面,它是一种通过从数据中自动学习特征表示来进行分类或回归分析的方法。

CNN模型可以自动地从数据中提取特征,其算法主要包括以下几个步骤:

(1)卷积层:卷积层是CNN网络的核心组件之一,其中卷积核通过滑动窗口的方式和输入数据进行卷积操作,从而提取出图像中的特征信息。卷积核的大小、步长、填充等参数可以在训练网络时进行调节。

(2)池化层:池化层用于压缩特征图像,减少网络参数和计算复杂度。在CNN网络中,通常采用最大池化或平均池化的方式来提取特征图像。

(3)全连接层:全连接层将经过卷积层和池化层处理后的图像特征进行展平处理,并将其输入到一个全连接神经网络中进行分类。

CNN模型的学习过程可以通过反向传播算法来实现,并通过梯度下降算法来调整网络参数,使其逐渐逼近最优解。CNN算法的训练过程必须在具有大量数据的环境中进行,以便模型能够更加准确地进行预测和分类。

二、卷积神经网络涉及的关键技术

1、卷积层

卷积层是CNN网络的核心组件之一。通常来说,卷积层可以通过一个或多个滤波器对输入数据进行卷积,从而提取图像中的特征信息。卷积核可以通过训练过程中的反向传播算法来调整,以获得更为准确的特征提取效果。

在卷积层中,滤波器的操作可以通过以下式子来表示:

$y_{ij}=\sum_{k=0}^{K-1} \sum_{l=0}^{L-1} w_{kl} x_{i+k,j+l}+b$

其中,$K$和$L$分别表示滤波器的高度和宽度,$w_{kl}$为滤波器中的权重参数,$x_{i+k,j+l}$和$b$表示输入图像中的像素值和偏置量。

2、池化层

池化层通常用于对输入数据进行下采样,从而减少网络的参数量和计算复杂度。常见的池化方式包括最大池化和平均池化两种。在最大池化的操作中,每个池化窗口输出其内元素的最大值;在平均池化中,每个池化窗口输出其内元素的平均值。

3、激活函数

激活函数是在卷积层的输出结果上进行非线性变换的函数,通常用于增强CNN模型的非线性特征。常见的激活函数包括Sigmoid、ReLu、TanH等,其中,ReLu是卷积神经网络中最常用的激活函数,它可以通过以下式子来计算:

$f(x)=max(0,x)$

4、Dropout技术

Dropout技术是一种用于防止卷积神经网络过拟合的技巧。在Dropout技术中,每个训练周期都会随机地关闭一部分神经元和连接,从而防止网络过拟合。在测试过程中,所有神经元均处于打开状态,以获得最优的分类阈值。

5、卷积神经网络的应用

卷积神经网络已经被广泛应用于图像分类、目标检测和语音识别等领域。其中,图像分类领域的应用较为广泛,这得益于CNN在图像处理上的优越性能。卷积神经网络已经被广泛应用于图像分类、目标检测和语音识别等领域。其中,图像分类领域的应用较为广泛,这得益于CNN在图像处理上的优越性能。2021年6月,中国国家人工智能开放创新平台发布了全球首个基于深度学习的外星生命搜索引擎——AlienHunterPro,采用基于Tensorflow的卷积神经网络算法,主要用于对地外生命探测任务进行来自行星表面的图像分类,是卷积神经网络算法在科学研究和探索领域初步应用的一个案例。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统
    的头像 发表于 11-15 14:53 317次阅读

    卷积神经网络的基本原理与算法

    ),是深度学习的代表算法之一。 一、基本原理 卷积运算 卷积运算是卷积神经网络的核心,用于提取图像中的局部特征。 定义
    的头像 发表于 11-15 14:47 380次阅读

    卷积神经网络的基本概念、原理及特点

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。本文将详细介绍
    的头像 发表于 07-11 14:38 983次阅读

    BP神经网络卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1402次阅读

    循环神经网络卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1259次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-03 10:49 531次阅读

    bp神经网络卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,并通
    的头像 发表于 07-03 10:12 1133次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积
    的头像 发表于 07-03 09:40 448次阅读

    卷积神经网络的基本结构和工作原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-03 09:38 547次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等领域。本文将详细介绍CNN在分类任务中的应用,包括基本结构、关键技术、常见网络架构以及实际应用案例。
    的头像 发表于 07-03 09:28 597次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-03 09:15 389次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经网络是一种前馈
    的头像 发表于 07-02 16:47 557次阅读

    卷积神经网络的基本结构及其功能

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-02 14:45 1474次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积
    的头像 发表于 07-02 14:44 622次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 3553次阅读