0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络算法代码matlab

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:50 次阅读
卷积神经网络算法代码matlab

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习网络模型,其特点是具有卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)。卷积神经网络源自对脑神经细胞的研究,能够有效地处理大规模的视觉和语音数据。本文将详细介绍卷积神经网络的工作原理和实现方法。

一、卷积神经网络的工作原理

卷积神经网络是一种分层结构的神经网络模型,其中每一层都对数据进行特征提取,并通过不断的训练和调整,最终得到最佳的特征提取方式。在卷积神经网络中,每一层的输入都是上一层所提取的特征。由于网络的每一层都拥有不同的卷积核和池化方式,因此卷积神经网络能够有效地提取高级别的特征,从而实现对大规模的图像和语音数据进行处理。

卷积神经网络中的卷积层和池化层是网络的核心,在这里我们来分别介绍一下它们的工作原理:

1、卷积层

卷积层是卷积神经网络的核心层,它包括多个卷积核和偏置项,具有对图像进行卷积计算的作用。卷积神经网络采用卷积操作来代替全连接操作,这种方法能够有效地减少训练参数的数量,并使得网络能够更好地适应大规模的数据。卷积神经网络中的每一个卷积核都是一个由一系列权重组成的滤波器,可以将图像特征进行卷积操作从而得到更高级别的图像特征,具有有效地提取局部和全局图像特征的特点。

卷积神经网络中每一个卷积层都包含了多个卷积核,它们分别对输入的图像进行卷积计算,并将得到的卷积特征图进行叠加或下采样处理。具体来说,卷积核在对输入图像进行卷积操作时,通过对应像素的权重加权求和,从而得到一个输出值。通过对于不同位置的像素进行卷积操作,我们可以得到一组特定大小的输出特征图。输出的特征图数量等于卷积核的数量,这些特征图包含了卷积操作提取的当前的特征。

2、池化层

池化层是卷积神经网络中的另一种代表性层。它通过对特征图进行降采样的方式,将输入数据进行压缩,从而达到减少计算量和过拟合的目的。池化层进行局部平均或者最大值的缩小处理,可以增强模型的鲁棒性和不变性,具有有效地减少网络参数的数量和运算量的特点。

卷积神经网络中常见的池化方式有平均池化和最大值池化,前者通过计算局部区域内像素的平均值,后者计算局部区域内像素的最大值。通过对特征图进行不断的缩小和压缩,我们可以在不损失大量信息的情况下,达到网络结构简洁化和提升稳定性的目的。

二、卷积神经网络matlab实现

下面我们以matlab为例,通过实现一个模拟卷积神经网络的例子来介绍卷积神经网络算法的实现方法。

1、数据预处理

首先,我们需要对数据进行预处理。在本例中,我们使用mnist手写数字数据集来进行训练和测试。该数据集包含了60000张训练图像和10000张测试图像,每张图像大小为28*28像素。

在这里,我们使用matlab中的imageDatastore函数来读取mnist数据集。该函数能够自动将数据转换为matlab文件,可以大大简化数据的读取和预处理过程。

imageSize = [28,28,1];
numTrainFiles = 60000;
numValidFiles = 5000;
numTestFiles = 10000;
trainFolder = "mnist/train";
testFolder = "mnist/test";
imdsTrain = imageDatastore(trainFolder,"IncludeSubfolders",true,"FileExtensions",".jpg","LabelSource","foldernames","ReadFcn",@(x)readAndPreprocessImage(x,imageSize));
imdsTest = imageDatastore(testFolder,"IncludeSubfolders",true,"FileExtensions",".jpg","LabelSource","foldernames","ReadFcn",@(x)readAndPreprocessImage(x,imageSize));
[trainImgs,validImgs] = splitEachLabel(imdsTrain,numTrainFiles,numValidFiles,"randomize");
testImgs = imdsTest;
trainLabels = trainImgs.Labels;
validLabels = validImgs.Labels;
testLabels = testImgs.Labels;

2、卷积神经网络模型定义

接下来,我们需要定义卷积神经网络的模型。在这里,我们定义一个网络结构为“Convolution - ReLU - Pooling - Convolution - ReLU - Pooling - FullyConnected”的模型。其中,在每一层中,我们都可以定义不同的参数,比如卷积核大小、池化方式、激活函数等。

numFilters = 32;
filterSize = [5,5];
poolSize = [2,2];
poolStride = [2,2];
layers = [
imageInputLayer(imageSize)
convolution2dLayer(filterSize,numFilters,"Padding",[2 2 2 2])
reluLayer()
maxPooling2dLayer(poolSize,"Stride",poolStride)
convolution2dLayer(filterSize,numFilters,"Padding",[2 2 2 2])
reluLayer()
maxPooling2dLayer(poolSize,"Stride",poolStride)
fullyConnectedLayer(10)
softmaxLayer()
classificationLayer()
];

3、训练和测试模型

最后,我们使用matlab中的trainNetwork函数来训练和测试我们的模型。该函数可以自动计算每个epoch的损失和精度,并更新网络的权重和偏置项参数。

options = trainingOptions(
"adam",
"InitialLearnRate",0.001,
"MaxEpochs",10,
"ValidationData",{validImgs,validLabels},
"ValidationFrequency",50,
"Plots","training-progress"
);

net = trainNetwork(trainImgs,trainLabels,layers,options);

接下来,我们使用matlab中的classify函数来对测试数据进行分类。在这里,我们可以计算出模型的分类准确率和损失函数值。

[testPreds,probs] = classify(net,testImgs);
testAccuracy = sum(testPreds == testLabels)/numel(testLabels);
testLoss = loss(net,testImgs,testLabels);

最后,我们可以输出测试结果,以及可视化显示每一层的特征图,以便更好地理解网络的特征提取过程。

figure('Units','Normalized','Position',[0.5 0.15 0.25 0.7]);
for i=1:numFilters
subplot(8,4,i);
imshow(net.Layers(2).Weights(:,:,1,i));
title(strcat("Filter ",num2str(i)));
end

这样就完成了卷积神经网络的模拟实现。我们可以看到,卷积神经网络通过对数据层次化分析和提取,有效地提升了图像分类、目标定位和物体识别等应用的精度和稳定性。

三、总结与展望

卷积神经网络作为一种深度学习网络模型,具有对图像和语音等大规模数据进行处理的优越性能。在实现中,我们需要对数据进行预处理,并根据不同的需求定义不同的网络结构和参数,通过训练得到最优的特征提取方式。实践证明,卷积神经网络在图像分类、目标检测、自然语言处理等领域都取得了非常显著的成果,未来可望在更广泛的领域中得到广泛应用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • matlab
    +关注

    关注

    182

    文章

    2963

    浏览量

    230128
  • 滤波器
    +关注

    关注

    160

    文章

    7725

    浏览量

    177630
  • 卷积神经网络

    关注

    4

    文章

    366

    浏览量

    11844
收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统
    的头像 发表于 11-15 14:53 164次阅读

    卷积神经网络的基本原理与算法

    ),是深度学习的代表算法之一。 一、基本原理 卷积运算 卷积运算是卷积神经网络的核心,用于提取图像中的局部特征。 定义
    的头像 发表于 11-15 14:47 220次阅读

    卷积神经网络的基本概念、原理及特点

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。本文将详细介绍卷积
    的头像 发表于 07-11 14:38 776次阅读

    BP神经网络卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1182次阅读

    循环神经网络卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1099次阅读

    卷积神经网络和bp神经网络的区别在哪

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的详细比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,
    的头像 发表于 07-04 09:49 9148次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 10:49 489次阅读

    如何使用MATLAB神经网络工具箱

    和训练神经网络。本文将介绍如何使用MATLAB神经网络工具箱,以及如何解读神经网络的结果图。 MATLAB
    的头像 发表于 07-03 10:34 2181次阅读

    bp神经网络卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,并通
    的头像 发表于 07-03 10:12 993次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:15 346次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经网络是一种前馈
    的头像 发表于 07-02 16:47 494次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原
    的头像 发表于 07-02 14:44 551次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 2793次阅读

    卷积神经网络的优点

    卷积神经网络的优点  卷积神经网络(Convolutional Neural Network,CNN)是一种基于深度学习的神经网络模型,在图
    的头像 发表于 12-07 15:37 4061次阅读

    卷积神经网络通俗理解

    学习(deeplearning)的代表算法之一 ,卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类
    的头像 发表于 11-26 16:26 1023次阅读