01 说明
在本例中设计了一个倾斜表面浮雕光栅(SRG, Slanted Surface Relief Grating) 将光耦合到单色增强现实(AR)系统的波导中。光栅的几何结构经过优化将垂直入射光引导至光栅的-1级中,然后将光栅特性导出为Lumerical 亚波长模型(LSWM, Lumerical Sub-Wavelength Model) JSON格式,以便在Speos中对该SRG进行系统级模拟。
02 综述
SRG所设计的几何参数为其倾斜角度、填充因子和高度,如下图所示:
光栅和衬底的折射率为1.8,光栅被空气包围,周期为393nm。光栅将被优化为将550nm波长的光传输到光栅的-1级。我们将使用RCWA求解器来定义仿真参数并运行和优化仿真。
步骤1:内耦合光栅的优化
该步骤将使用Lumerical内置的粒子群优化(PSO)算法对SRG的倾斜角、填充因子和光栅高度进行了优化,以最大限度地将550nm波长的S偏振传输到-1光栅级。
初始设计的仿真结果显示大约56%垂直入射的S偏振光被传输到光栅的-1级。然后将使用软件的优化功能优化光栅几何结构以提升该数值。“optimization”对象包括SRG的倾斜角度、填充因子和光栅高度,传输到S偏振的光栅-1级的能量被用作品质因数(FOM)。设定如下所示:
优化后的几何结构中光栅-1级的衍射效率约为94.7%。需要注意的是,这种类型的光栅的FOM[1]可以具有多个局部最大值。虽然内置的PSO工具是一种方便的快速优化方法,但可以使用更先进的优化方法来充分探索参数空间。
步骤2:完整表征和数据导出
光栅优化是利用来自光栅上方的垂直入射光来进行。然而,一旦选定了优化的几何结构,就必须针对光线追迹仿真中预期的入射角范围以及前后方向计算完整的光栅特性。
首先,在RCWA中做如下参数设置:
propagation direction: both
incident angle: range
minimum theta: 0
maximum theta: 85
theta points: 18
minimum phi: 0
maximum phi: 360
phi points: 37
如上设置,针对前向和后向的指定入射角范围计算了优化的SRG的S参数。然后,这些结果被导出为LSWM JSON格式,该文件适合使用脚本文件导入到Speos或Zemax中。
审核编辑:刘清
-
PSO
+关注
关注
0文章
49浏览量
12909 -
SRG技术
+关注
关注
0文章
4浏览量
4345 -
求解器
+关注
关注
0文章
77浏览量
4504
原文标题:Lumerical表面浮雕光栅仿真设计
文章出处:【微信号:光电资讯,微信公众号:光电资讯】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论