0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

热力管道无补偿电预热设备解决方案

能华电源 2022-11-13 00:05 次阅读

预制直埋保温管道无补偿电预热安装
1无补偿电预热安装的应用领域及原理
①应用领域
无补偿预热安装主要应用于城市热网中最高运行温度不超过140℃的热水直埋保温管道。由于无补偿预热安装采用了提前释放应力的技术,从而在很大程度上减少了固定支座与补偿器的数量。这一方面降低了工程造价;另一方面由于补偿器使用数量的减少,提高了热网运行的可靠性,降低了热网的运行维护费用。与传统的无补偿预热安装方式相比,电预热安装环保节能,施工便捷,工期短,进一步降低了工程造价,是目前国际上广泛应用的先进的热水直埋保温管道安装方式。
②安装原理
当预制直埋保温管道安装一定长度时(一般情况下不大于1000m),将管道加热到一定温度,当管道恢复到安装温度时,管道预先承受了一定的拉应力。当管道投入工作时,随着温度的升高,管道拉应力逐渐减小,当达到预热温度时,整段管道在此温度下应力为零。继续升温,产生压应力,并随着温度的升高而逐渐增大,当温度升至工作温度时,管道的热应力(压应力)仍小于许用应力。这样,管道便可以在不采用波纹管补偿器的情况下正常工作[1~3]。
2无补偿电预热对保温管道的要求
无补偿电预热安装技术对保温管及其接头连接方式有着严格的要求:硬质聚氨酯泡沫与钢管和高密度聚乙烯外套管之间应粘接牢固,保证三位一体,尤其是在运行过程中必须保持完整。因此在预制直埋保温管道的制造过程中,对钢管的外表面进行抛丸处理,对高密度聚乙烯外套管内壁进行高压电晕处理,以保证三者之间有足够的粘结性能。对接头的连接方式,要求采用电热熔套连接,同样是为了保证管道的整体性。
3相关参数的计算[4]
①理论预热温度
理论预热温度的计算式为:

式中tm——理论预热温度,℃,即电预热设备设置的加热温度

t1——管道工作循环最高温度,℃,通常指管道最高设计温度

t2——管道工作循环最低温度,℃,对于供暖期运行的管道通常取10℃

②预热段热伸长量

预热段热伸长量的计算式为:

△L=αlL(tm-ti)

式中△L——预热段热伸长量,m

αl——钢材的平均线膨胀系数,K-1,参照GB50316—2000《工业金属管道设计规范》取值

L——预热段长度(管沟长度),m

ti——预热段初始应力为零时的管道温度,℃,即电预热设备开机时钢管的温度

4无补偿电预热安装工艺

每个预热段应是独立的,且保证工作钢管内无积水。若预热段中存在分支,分支管道四周应该挖空,保证预热段在预热过程中能自由伸缩,挖空尺寸应大于1~2倍的热伸长量。对于某一确定的预热段,用砂子回填管沟,高度要达到直管外径的75%,而且夯实。在每个预热段两端的钢管上焊接连接螺栓,用于连接电缆。把钢管直接作为负载电阻进行加热,供水管与回水管之间除了预热段首尾由电缆连接形成回路以外,不得在其他位置有任何跨接和连接。在预热段两端,设定热伸长量标线,若达到理论预热温度而热伸长量未达到,以5℃为步长升高预热温度,最高不能超过80℃。达到热伸长量后,进行回填、夯实。

根据管道规格及施工时的环境温度,选用不同容量的电加热设备,钢管上施加的电压为无峰值直流安全电压,可选择恒流或恒压控制。对于长度为1000m的管沟,预热时间可控制在20h以内,环境温度越高,预热时间越短。进入保温阶段,电加热设备的输出电流根据设定温度和实际反馈温度自动调节。保温时间依据现场施工组织情况而定,一般前一预热段回填时,下一预热段就可开始预热了,两者可以同步进行。

5施工方案

应依据具体的地形和热网结构,制定出最经济有效的施工方案。一般长度为1000m的管沟为1个标段,根据不同的热网结构,选用不同容量的电预热设备。一次预热的管道长度可长可短,一般最长为1000m,最短长度依据管径的不同而定。

对于热网中存在的变径、弯头、三通以及转角,在施工方案设计时,要结合电加热设备的功率,充分考虑其预热的经济性,制定出合理的预热施工方案。对于个别较短管道,也要通过工艺上的特殊处理,使其满足预热要求。

为了充分利用夜间时间,采用倒排工期的方法计算预热开始时间,保证在预热开始后的次日7:00开始回填、夯实。

6注意事项

若采用水压试验,试验完毕后管道中的水必须排尽。预热前管沟中的水必须排尽。预热前除分段处,其他所有的保温管接头应处理完毕。预热前要拆除预热段所有其他短路连接。预热回填,必须分层夯实。先人工夯实,再采用机械夯实。每个预热段达到预热温度后,回填土自两端开始向中间回填,保证整个预热段回填土工作在16h内完成。

预热后,管道已存在应力,以后不可将管道切断,所有阀门、三通等都应预先设计好,管道上也不可再开较大的孔。检查室在预热后再砌筑,便于管道伸长。若此后要在管道上另加分支,需根据热网结构,重新设计预热方案再次预热相关管段或在新增三通处进行补强处理。整个预热段的敷设坡度不能超过1.5°。当遇到过路情况时,加套筒使管道自由穿过,保证在预热过程中一个预热段障碍不超过1处。

7与热风、热水预热的比较

7.1安装效率

热风预热设备对施工现场有一定的要求,设备庞大,安装环节多。热风预热设备的拆卸、搬运和稳放安装时间很难保证。在一切都非常顺利的情况下,热风预热设备从一个预热段移到另一个预热段,至少需要24h,而电预热设备最多只需要3h。

7.2预热效果

电预热利用电能对钢管进行加热,钢管中无需任何加热介质,因此管道预热均匀,而且预热时间短。电预热设备的输出电压、电流可调,可更方便地满足预热工艺的要求,以获得理想的预热效果。电预热设备的温控系统有抗干扰功能,在实时显示温度的同时,还有纸记录仪可打印数据。

热风预热的升温速度很慢,大约是电预热的20%。由于热风在管道回路中流动时的热损失非常大,因此管道的温度不均匀。通常情况下,管道起始端和末端的温差在20℃左右,影响管道热伸长的均匀性。

由于热水预热必须在管道中注满热水,因此预热温度比较均匀,但由于水的重量导致管道与土壤之间的摩擦力增大。因此,管道的热伸长量很难达到设计要求,尤其是对大管径管道预热时,管道中容易出现锚固段,预热效果不理想。

7.3工艺效果

①热风预热管段温度不均匀,热风进口处温度高,出口处温度低,为保证热伸长量,往往要求进口处温度要高于预热温度。采用电预热时,整个预热段的受热比较均匀。

②热风预热设备占用空间大,因此每个预热段之间预留的空间大,这样在预热后,往往导致管端剩余空间仍大于一个补偿器的长度,需要再填入一短节保温管,而这段管道是未经过预热的。而采用电预热时,管端剩余空间小,在预热结束后,剩余空间小于一个补偿器的长度,这时需要将管道切去一部分以便安装补偿器,这样就保证了所有的管道都是经过热伸长的。

8结论

热水直埋保温管道的无补偿预热安装是一种安全可靠的安装方式,而电预热是预热方式的创新,大功率的电预热设备让我们可以根据客户需求,结合实际热网结构,进行最优化的预热段划分,从而最大限度地减少补偿器的数量,缩短工期,降低工程造价。电预热还具有预热时间短、预热均匀、操作简单、容易实现等优点,提高了热网运行的稳定性以及使用寿命,推动了热水直埋保温管道安装技术的发展。

电预热技术在燕郊开发区供热工程管道安装中的应用问题

本文理论与实践相结合,通过电预热技术在燕郊开发区供热工程中的应用,分析了电预热技术的基本原理、电预热技术及电预热设备在直埋管道安装过程中的应用情况以及注意事项。印证了电预热无补偿(或少补偿)直埋技术对大管径管道的可行性和适用性。

一、前言

对于大管径管道直埋敷设,通常采用两种方式:有补偿安装和预应力安装。根据现场条件的不同,预应力安装方式又可分为敞槽预热方式和覆土预热方式。由于敞槽预热方式比覆土预热方式能更快达到预应力效果,通常在现场条件允许的情况下,首选敞槽预热方式。

采用敞槽预热方式的前提是要具备稳定的临时热源,敞槽预热的热源主要为四种,分别为热水、热风、蒸汽及电预热。电预热与前三种预热技术相比较对加热设备的要求更小,更易实施,具有如下明显的技术优势:

1.要求简单,不需要在管道中安装阀门和固定支架;

2.热消耗量小,预热均匀;

3.电预热设备体积小、易操作、无震动、无噪音,自动监控;

4.适用范围广,只要钢管为介质输送管,都可以实现;

5.低电压可以保证施工安全。

二、电预热技术在燕郊开发区供热工程中的应用

燕郊开发区海油大街热力管线管径为DN800,供、回水温度为140℃/90℃,设计压力为1.6MPa。海油大街热力管线于2008投入使用,根据现场实际情况及工程进度,并考虑到甲方的资金状况,管线的敷设方式为预应力直埋敷设,工程采用了电预热方式。通过电预热技术在燕郊开发区供热工程中的应用,积累了一些实践经验供大家参考。

1、预热准备工作

a.管道预热应在直埋管道安装完毕后进行,若管道已作水压试验,应确保将管道中的水排放完,避免在预热过程中出现危险;

b.预热前先对沟槽进行回填,回填高度不高于管道外径的3/4,这是为了保证管道在预热过程中始终保持同心;

c.在预热管段的两侧分别设标尺,并派专人记录管道的伸长量,伸长量应等于两侧伸长量的总和;

d.将预热管段两端用端帽密封,防止气体流通;

e.检查预热设备及电缆是否正确连接,管道上有无短路连接,如果存在短路连接点,应在预热之前及时切断或调整预热管段,避开短路点。

2、预热温度

鉴于管道预热前,已对沟槽进行了部分回填,管道须克服土壤的摩擦力,且高温时管道的屈服应力下降,预热温度应该略高于循环中间温度。附加温度的推荐值为0~8℃,即

tdp=tm+(0~8)(公式1)

tm=0.5×(t1+t2)(公式2)

式中:tdp—计算预热温度(℃);

tm—循环中间温度(℃);

t1—管道工作循环最高温度(℃);

t2—管道工作循环最低温度(℃)。

以燕郊开发区海油大街热力管线为例,其最高循环温度为140℃,管道仅在供暖季工作时最低循环温度为10℃,计算预热温度为80℃最为合适。

3、预热段的划分

合理确定预热段的长度。既能够保证施工进度、降低施工难度,同时还节省了施工费用。以燕郊开发区海油大街热力管线为例,该段管线总长度约为3.5km,全线共设3座检查室,检查室内设分支、固定支架及补偿器(见图1)。结合工程的施工难度及工程的总体时间安排,最后确定两检查室之间管线分为两个预热段,工程共设六个预热段,预热段长度在500~800米之间(预热段编号见图1)。

4、升温速度及预热时间

燕郊开发区海油大街热力管线沿道路敷设,热力管线在遇到障碍时采用了连续小折角处理方式避开障碍,折角不大于2度。这种情况预热时往往因为管道膨胀不均匀,造成夹角处局部应力过大。为使管道得到充分膨胀,应严格控制升温速度。升温速度为4℃/小时,并在温度升至计算预热温度时恒温6小时。纵观整个预热过程,管道的温度基本按照设定的温升速度直线均匀上升,管道的加热速度均匀平稳,没有大的起伏。预热时间需要20至30小时。

5、预热伸长量

ΔL=α(tm-t0)L(公式3)

式中:ΔL——预热段管道伸长量(m);

t0——预热段管道初始位移为零时管道温度(℃),一般可取预热前环境温度;

L——预热段管道长度。

上式为预热段管道理论伸长量计算公式,在管道预热过程中,管道中间没有固定点,管道向两侧伸长。经观察发现管道的膨胀并不是连续稳定的。在预热开始阶段,管道的热伸长速度很慢,伸长量并没有太大变化(见表1)。但当温度继续升高后,管道的膨胀量基本按照直线匀速上升(见图2)。这说明管道的预热是基本均匀的,不存在没有预热的管段。同时也印证了保持合理的升温速度是非常有必要的。

预热时确定管道预热处理的标准应为预热伸长量,当管段的伸长量达到计算预热伸长量时,应立即回填。预热温度可以作为预热升温时的一个参考值。若附加温度已达到推荐的最大值,而伸长量尚未达到计算值,则须认真分析原因,不要盲目升温,最好采取恒温让管道充分膨胀或外力拉伸等办法,以达到计算伸长量。

6、预热段之间的处理方法

如何处理好预热段之间的衔接是影响管道预热效果的重要因素,两个预热段之间的管端因降温会引起管端回缩。遂采用设置一次性补偿器的方式来补偿回缩量。具体步骤如图3所示。

一次性补偿器焊死后将成为管道系统的一部分,整个预热管道系统最后将形成一个完全与土壤隔绝的封闭系统。

但这样做势必增加了工程费用,且一次性补偿器需长时间敞槽,会对交通造成一定的影响,故还须合理划分预热段,尽量减小管端收缩量和一次性补偿器的数量。以海油大街热力管线工程为例,两检查室之间分为两个预热段,可在供水管上安装三个一次性补偿器,一次性补偿器安装位置如图1所示。一次性补偿器补偿量的选择应根据管道冷却后的收缩量确定,经观察海油大街热力管线工程每个预热段的收缩量在160mm至200mm之间,一次性补偿器的补偿量选定为240mm。

7、管道回填

当管道达到预热伸长量以后,应立即开始管沟回填。回填的顺序为由预热管段的两端向中间回填。回填土中不得含有碎砖、石块大于100mm的冻土块及其他杂物。

8、管道预热后对管道的影响

直埋管道预热后,即使在冷态时,管道中也分布着应力。在管道上开分支时,应注意保护干管的预应力状态,增加临时措施。

三、结论

燕郊开发区海油大街热力管线已安全运行了4个采暖季,证明电预热技术应用于大管径管道直埋敷设是安全可靠的。采用预热安装技术比冷安装有补偿敷设方式减少了约7座补偿器检查室,不仅节省了投资,而且减少了管网的维修工作量,降低了劳动成本。对于地下水位较高、土壤具有一定腐蚀性,含氯离子较高的地区,特别适用该技术。

供热管网无补偿直埋安装电预热介绍

保温管无补偿直埋电预热安装,我们的优势在于预热时间短,一次可预热的管沟长度可达1000米(DN1200管线供回水各1000米长),进一步减少了一次性补偿器的数量。一个预热段无论长短多少,它的自由段长度是一定的,如果一次性预热长度越长,自由段长度所占预热段长度比例就越小,自由段收缩量所占的比例就越小,管线所要克服的平均应力就越小。所以在一定范围内,一次性预热的管沟长度越长就越好。我公司对于DN1200mm以上规格的管材冬季施工时,预热时间也能控制在16小时以内,是同行业预热时间最短的厂家,工程业绩遍布新疆、内蒙、山西、山东、河南、河北等多个省市,现已具备DN1400管线预热能力。

供热管网无补偿直埋安装电预热介绍

一、无补偿电预热安装技术的应用领域

无补偿预热安装现主要应用于城市热力管网中最高运行温度不超过140摄氏度的高温热水管道。因为无补偿预热安装采用了提前释放应力的技术,从而在很大程度上减少了固定墩和补偿器的数量,一方面降低了工程的施工安装费用,另一方面由于补偿器使用数量的减少,提高了管网运行的可靠性,从而又降低了管网的运行维护费用。与传统的无补偿预热安装方式相比,电预热安装环保节能,施工便捷,工期短,从而进一步降低了工程投资费用,是目前国际上广泛使用的先进的保温管无补偿预应力安装方式。

二、工艺概述

把钢管管线直接作为负载电阻进行管道加热,设备安装简单方便。加热段供回水管线末端用电缆线短接,始端分别接电源两端(无正负极顺序要求)。根据管材规格的大小及施工时的环境温度,选用不同容量的电加热设备。2000米管线(1000米管沟)加热时间都控制在20小时以内,当然环境温度越高时,预热时间越短。保温时间依据现场施工组织情况,一般上一预热段管线回填时,下一段管线就可开始预热了,两者可以同步进行。这种方法施工简便,因取消了固定支架,用一次性补偿器代替了常规的波纹补偿器,大大降低了管线的成本,并提高了管网运行的可靠性。

三、施工方案的设计原则

施工方案应依据具体的地形结构和管网结构体的分布情况来制定,这样才可制定出最经济有效的施工方案。一般1000米管沟长度为1个标段,我们根据不同的管网结构,选用不同容量的电预热设备,一次预热的管线长度可长可短。一般最长1000米管沟,最短300米管沟。

对于管网中存在的变径、弯头、三通以及折角,我们在做方案设计时,要结合电预热设备的特点,充分考虑其预热的经济性,制定出合理的方案来。对于管网设计的一些问题要提前与设计者沟通。要充分考虑附录二中的种种因素。对于个别短管线,我们也要通过工艺上的特殊处理,使其满足预热要求。为了充分利用夜间时间,采用倒排工期的方法计算预热开始时间,保证在预热第二天早7点开始回填、夯实。

四、注意事项

预热后,管线已存在应力,以后不可将管线切断,所有阀门、三通等都应预先设计好,管线上也不可再开大的开孔。井室在预热后再砌筑,以便于管线伸长。若以后要在管线上另加分支,需根据管网结构,重新设计预热方案再次预热相关管线或新增加的三通处作补强处理。三通处的沟槽宽度应适当加宽,以适应预热管线处三通的自由移动。

五、电预热设备的优点

1、大功率小体积,安装方便,操作简单。

2、单台设备即可对较大口径的管材进行预热

3、可多台设备同时使用,进一步缩短预热时间

4、设备投入运行后,自动监控,无异常不需人工干扰

5、多重保护功能,可自动切断电源,保证施工人员及设备的安全

6、可动态显示管线温度变化曲线,同时具有打印功能,为监控施工质量提供依据

7、保温阶段设备自动动态控制,以保证整个回填土阶段管线伸长量的稳定,确保工程质量

六、电预热的技术优势

我厂结合我国热力管网的实际结构,该设备采用了国际最先进的电子技术,自动化控制程度高,组合模块少,可靠性强,同时实现了大功率小体积的最优化,为现场施工的便利提供了前提。从国外直接引进的适用于小管网预热的设备应用于国内大口径管网预热时,预热时间偏长,设备组合使用的数量多,一次性预热的长度也受到一定的限制。

超大功率的电预热装备让我们可以根据客户需求,结合实际管网布局,柔性地进行最优化的预热分段,从而最大限度地降低补偿器的数量,缩短工期,减少工程费用,现在我厂有多台超大功率电预热设备,可满足用户需求。

预热电源制造现场

预热电源制造现场

预热电源

预热电源

管道预热工程

管道预热工程

管道预热工程

管道预热工程

管道预热工程

管道预热工程

施工现场-设备到场

施工现场-设备到场

施工现场

施工现场

施工现场

施工现场

施工现场-填土

施工现场-填土

施工现场—发电机及余热电源

施工现场—发电机及余热电源

施工现场

施工现场

管道预热工程,生产保温管电预热设备

管道预热工程,生产保温管电预热设备

施工现场-填土

施工现场-填土

温管电预热设备

温管电预热设备

预热电源

预热电源预热电源

预热电源

预热电源

温管电预热设备

温管电预热设备
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    184

    文章

    16751

    浏览量

    246107
收藏 人收藏

    评论

    相关推荐

    SVG无功补偿设备可以代替电容补偿

    SVG(Static Var Generator)无功补偿设备是一种先进的电力电子设备,它能够快速、连续、精确地补偿无功功率,并且具有谐波抑制的功能。SVG无功
    的头像 发表于 05-15 15:00 349次阅读

    智慧管道物联网远程监控解决方案

    智慧管道物联网远程监控解决方案 智慧管道物联网远程监控解决方案是近年来在智能化城市建设和工业4.0背景下,针对各类管道网络进行高效、安全、精
    的头像 发表于 03-28 15:49 220次阅读
    智慧<b class='flag-5'>管道</b>物联网远程监控<b class='flag-5'>解决方案</b>

    矿场设备远程监控解决方案

    矿场设备远程监控解决方案 在现代工业智能化进程中,针对矿场设备远程监控的解决方案显得尤为重要。这一方案旨在通过集成先进的信息技术与物联网技术
    的头像 发表于 03-27 10:41 206次阅读
    矿场<b class='flag-5'>设备</b>远程监控<b class='flag-5'>解决方案</b>

    华为和Sonatrach联合创新一种智能油气管道光纤传感检测解决方案

    近日在西班牙巴塞罗那举办的2024世界移动通信大会,阿尔及利亚国有石油公司Sonatrach分享了与华为部署的智能油气管道光纤传感检测解决方案的成果。
    的头像 发表于 03-18 14:08 347次阅读

    lcc-s无线充电拓扑结构实现发射端有补偿电路接收端无补偿电路恒压充电

    lcc-s无线充电拓扑结构实现发射端有补偿电路接收端无补偿电路恒压充电的公式推导及电路设计
    发表于 03-16 16:38

    触景无限荣获英特尔边缘挑战赛全球Top10,致力发展工业新生产力

    近日,触景无限科技凭借卓越的技术实力和创新的解决方案:《电厂热力管道监测》(OCR赛道)与《尾矿库风险监测》(缺陷检测赛道),在2023英特尔边缘解决方案挑战赛中喜获殊荣,成功入选全球
    的头像 发表于 02-25 15:24 539次阅读

    GD32F3x0的设备限制及解决方案介绍

    电子发烧友网站提供《GD32F3x0的设备限制及解决方案介绍.pdf》资料免费下载
    发表于 12-14 09:47 0次下载
    GD32F3x0的<b class='flag-5'>设备</b>限制及<b class='flag-5'>解决方案</b>介绍

    232转profinet网关在热力发电厂应用案例

    兴达易控232转profinet网关(XD-PNR200)在热力发电厂的应用案例非常成功。该网关是一个可靠且高效的解决方案,用于将兴达易控232协议转换为profinet协议。热力发电厂通过该网关
    的头像 发表于 11-23 10:37 255次阅读
    232转profinet网关在<b class='flag-5'>热力</b>发电厂应用案例

    静态无功补偿方案如何改动态无功补偿方案

    静态无功补偿和动态无功补偿是电力系统中常用的两种无功补偿方案。它们在改善电力系统功率因数、稳定电压和降低谐波等方面发挥着重要作用。然而,随着电力工业的快速发展和电能质量问题的日益凸显,
    的头像 发表于 11-17 14:32 447次阅读

    氦质谱检漏仪应用于半导体新材料和设备管道检漏

    上海伯东提供半导体新材料和设备管道检漏解决方案, 助力企业生产高质量的六氯乙硅烷 Si₂Cl₆. 六氯乙硅烷广泛应用于有机硅化合物的合成, 电子半导体材料制造.
    的头像 发表于 11-09 15:31 198次阅读
    氦质谱检漏仪应用于半导体新材料和<b class='flag-5'>设备</b><b class='flag-5'>管道</b>检漏

    无功补偿设备应在设备启动前投入还是设备启动后?

    无功补偿设备在电力系统中具有重要的作用,它能够提高电力系统的功率因数,减少无功功率的损失,提高能源利用效率。但是,无功补偿设备的投入时间一直是一个争议的焦点。有人认为,无功
    的头像 发表于 11-06 11:38 776次阅读

    关于无功补偿问题的探讨及其解决方案

    电子发烧友网站提供《关于无功补偿问题的探讨及其解决方案.doc》资料免费下载
    发表于 11-01 11:15 0次下载
    关于无功<b class='flag-5'>补偿</b>问题的探讨及其<b class='flag-5'>解决方案</b>

    大圆柱芯在PACK应用中的轻量化解决方案

    性能等相关问题:如结构胶(导热、绝缘)、灌封胶(灌封、导热)、密封胶(密封) 以下是我司为各大圆柱芯厂家提供的轻量化解决方案: 一、大圆柱芯发泡灌封技术: 电池包无模组方案采用大量
    发表于 10-17 10:49

    无功补偿设备过修和欠修是什么意思

    近年来,无功补偿设备在电力系统中的应用越来越广泛。然而,对于许多人来说,无功补偿设备过修和欠修的概念却仍然相对模糊。所以,我们将深入探讨无功补偿
    的头像 发表于 09-07 14:42 878次阅读

    发电厂热力管道智能监测系统案例解析

    在以往的作业中,管道的状态监测只能依赖人工的方式,测量机械式膨胀指示器刻痕的长度与方向。由于机组监测点位分散,人工采集数据费时费力,同时测量精度也比较低,也无法实现连续的管道测量,无法实时监控和评估管道系统的安全状况。尽管投入了
    发表于 08-22 11:13 609次阅读
    发电厂<b class='flag-5'>热力</b><b class='flag-5'>管道</b>智能监测系统案例解析