0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

从AI发展时间表回顾人工智能的历史

知识酷Pro 来源:知识酷Pro 2023-08-29 15:42 次阅读

人工智能的现代概念已经伴随我们走过了几十年,但直到最近,人工智能才抓住了日常生活、商业和社会的集体心理。

人工智能是指计算机和系统执行通常需要人类认知才能完成任务的能力。人工智能与人的关系是共生的,其“触角”触及人类生产、生活的方方面面,从疾病患者的早期检测和更好的治疗,到各种形式和各种规模企业新的收入来源和更好的运营管理,如今已是无处不在。

自1950年图灵测试以来,人工智能工具和技术已经取得了令人难以置信的进步,其中许多突破性进展一直在业界的关注下被频繁发掘。尽管如此,直到过去十年,人工智能才真正应用于满足大众需求的场景,智能语言助理、自动驾驶汽车、生成式AI等等彻底改变了大众市场的需求格局。

我们或许可以透过人工智能发展迄今为止的历史时间表来思考AI的未来,以及对大众生活的影响:

1950年

艾伦·图灵发表了《计算机器与智能》,图灵测试打开了通向人工智能的大门。

1951年

Marvin Minsky 和 Dean Edmonds 使用3000个真空管来模拟由40个神经元组成的网络,开发了第一个名为SNARC的人工神经网络(ANN)。

1952年

Arthur Samuel开发了Samuel Checkers-Playing Program,这是世界上第一个自学游戏的程序。

1956年

约翰·麦卡锡、马文·明斯基、纳撒尼尔·罗切斯特和克劳德·香农在一项研讨会提案中创造了“人工智能”一词,该研讨会被广泛认为是人工智能领域的创始活动。

1958年

弗兰克·罗森布拉特开发了感知器,这是一种可以从数据中学习的早期人工神经网络,可以看成是现代神经网络的基础。

约翰·麦卡锡开发了Lisp编程语言,该语言很快被人工智能行业采用,并受到开发人员欢迎。

1959年

亚瑟·塞缪尔在一篇开创性论文中创造了“机器学习”一词,解释说明计算机可以通过编程来超越程序员

Oliver Selfridge发表了《Pandemonium:学习范式》,这是对机器学习的里程碑式贡献,它描述了一种可以自适应改进自身以发现事件模式的模型。

1964年

Daniel Bobro在麻省理工学院攻读博士期间开发了STUDENT,这是一个早期的自然语言处理NLP程序,旨在解决代数相关问题。

1965年

Edward Feigenbaum、Bruce G. Buchanan、Joshua Lederberg和Carl Djerassi开发了第一个专家系统Dendral,该系统帮助有机化学家识别未知的有机分子。

1966年

Joseph Weizenbaum创建了Eliza,这是有史以来最著名的计算机程序之一,它能够与人类进行对话,并使人相信该软件具有人类情感。

斯坦福研究院开发了首款结合人工智能、计算机视觉、导航和自然语言处理的移动智能机器人Shakey。它是自动驾驶汽车和无人机的鼻祖。

1968年

Terry Winograd创建了SHRDLU,这是第一个多模态人工智能,可以根据用户指令操作并推理出一个由块组成的世界。

1969年

Arthur Bryson和Yu-Chi Ho描述了一种可实现多层人工神经网络的反向传播学习算法,它是感知器的技术的延伸,也是深度学习的基础。

Marvin Minsky和Seymour Papert出版了《感知器》一书,描述了简单神经网络的局限性,这导致了神经网络研究的衰落,符号人工智能研究得以蓬勃发展。

1973年

詹姆斯·莱特希尔发布的《人工智能:综合调查》报告导致英国大幅减少对人工智能研究的支持。

1980年

符号Lisp机器商业化,标志着人工智能研究复兴。但几年后,Lisp机器市场崩溃了。

1981年

Danny Hillis为人工智能和其他计算任务设计了并行计算机,其架构类似于现代GPU

1984年

马文·明斯基和罗杰·尚克在人工智能促进协会的一次会议上创造了“人工智能冬天”一词,警告商界人工智能炒作将导致大众失望和行业崩溃,这在三年后发生了。

1985年

Judea Pearl引入了贝叶斯网络因果分析,它提供了表示计算机中不确定性的统计技术。

1988年

彼得·布朗等人发表了“语言翻译的统计方法”,为机器翻译方法的更广泛的研究铺平了道路。

1989年

Yann LeCun、Yoshua Bengio和Patrick Haffner演示了如何使用卷积神经网络(CNN) 来识别手写字符,表明神经网络可以应用于现实世界的问题。

1997年

Sepp Hochreiter和Jürgen Schmidhuber提出了长短期记忆递归神经网络,它可以处理整个数据序列,例如语音或视频

IBM的“深蓝”在一场历史性的国际象棋复赛中击败了加里·卡斯帕罗夫,这是国际象棋卫冕世界冠军在锦标赛上首次被计算机打败。

2000年

蒙特利尔大学的研究人员发表了“神经概率语言模型”,提出了一种使用前馈神经网络来建模语言的方法。

2006年

李飞飞开始研究(后来于2009年推出)ImageNet视觉数据库,该数据库成为了人工智能热潮的催化剂,也是图像识别算法年度竞赛的基础。

2009年

Rajat Raina、Anand Madhavan和Andrew Ng发表了《使用图形处理器进行大规模深度无监督学习》,提出了使用GPU训练大型神经网络的想法。

2011年

Jürgen Schmidhuber、Dan Claudiu Cireşan、Ueli Meier和Jonathan Masci开发了第一个CNN,并赢得了德国交通标志识别竞赛,从而实现了“超人”的性能。

同年,苹果发布了Siri语音助理。

2012年

Geoffrey Hinton、Ilya Sutskever和Alex Krizhevsky介绍了一种深度CNN架构,该架构赢得了ImageNet 挑战并引发了深度学习研究和实现的爆炸式增长。

2013年

天河二号以33.86petaflops的速度将世界顶级超级计算速度提高了一倍,连续第三次蝉联世界最快系统的称号。

DeepMind引入深度强化学习,这是一种基于奖励和重复学习的CNN,抵达了人类专家的水平。

谷歌研究员Tomas Mikolov及其同事引入了Word2vec,以自动识别单词之间的语义关系。

2014年

Ian Goodfellow及其同事创造了生成对抗网络,这是一类用于生成照片、转换图像和深度模拟的机器学习框架。

Diederik Kingma和Max Welling引入了变分自动编码器来生成图像、视频和文本。

Facebook开发了深度学习面部识别系统DeepFace,能够以接近人类的准确度识别数字图像中的人脸。

2016年

DeepMind的AlphaGo在韩国首尔击败了围棋顶尖选手李世石。

优步在匹兹堡针对特定用户群体启动了自动驾驶汽车试点计划。

2017年

斯坦福大学研究人员在论文《使用非平衡热力学的深度无监督学习》中发表了有关扩散模型的研究成果。该技术提供了一种向图像添加噪声的过程进行逆向工程的方法。

谷歌研究人员在论文Attention Is All You Need中提出了Transformer的概念,启发了后续对能够自动将未标记文本解析为大型语言模型 (LLM) 的工具的研究。

英国物理学家史蒂芬·霍金警告说:“除非我们学会如何为潜在风险做好准备,否则人工智能可能成为人类文明史上最糟糕的事件。”

2018年

Cimon由IBM、空客公司和德国航空航天中心DLR开发,这是一个被送入太空协助宇航员的机器人

OpenAI发布了GPT(Generative Pre-trained Transformer),为后续的LLM铺平了道路。

Groove X推出了一款名为Lovot的家用迷你机器人,它可以感知并响应人类的情绪变化。

2019年

微软推出了Turing Natural Language Generation生成语言模型,该模型拥有170亿个参数

谷歌人工智能和朗格医学中心的深度学习算法表明在检测潜在肺癌方面优于放射科医生。

2020年

Open AI发布了由1750亿个参数组成的GPT-3 LLM,用于生成式AI文本。

英伟达宣布推出Omniverse平台测试版,用于在增强现实AR中创建3D模型。

2021年

OpenAI推出了Dall-E多模态AI系统,可以根据文本提示生成图像。

2022年

谷歌软件工程师Blake Lemoine泄密Lamda架构并声称其具有感知能力。

DeepMind推出用于为矩阵乘法等数学问题发现新型、高效且可验证的算法的AI系统AlphaTensor。

英特尔声称其FakeCatcher实时Deepfake检测器的准确度为 96%。

OpenAI于11月发布了ChatGPT,基于GPT-3.5 LLM并提供终端用户使用的UI聊天界面。

2023年

OpenAI宣布推出GPT-4多模态LLM,可接收文本和图像输入。

埃隆·马斯克、史蒂夫·沃兹尼亚克与数千位签名者敦促业界暂停训练“比GPT-4更强大的人工智能系统”六个月。

2023年之后

AI的历史仍在继续……

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计算机
    +关注

    关注

    19

    文章

    7520

    浏览量

    88229
  • AI
    AI
    +关注

    关注

    87

    文章

    31155

    浏览量

    269487
  • 人工智能
    +关注

    关注

    1792

    文章

    47442

    浏览量

    239003

原文标题:从AI发展时间表回顾人工智能的历史

文章出处:【微信号:ZHISHIKU-Pro,微信公众号:知识酷Pro】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    微软AI CEO苏莱曼谈对于人工智能的未来发展

    日前,微软 AI CEO 穆斯塔法·苏莱曼在清华大学的演讲中,分享了他对人工智能未来发展的深刻洞见。苏莱曼提出了三个对于 AI 的核心观点——首先,他强调,
    的头像 发表于 11-15 13:53 290次阅读

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    RISC-V在AI领域的发展前景怎么样?

    随着人工智能的不断发展,现在的视觉机器人,无人驾驶等智能产品的不断更新迭代,发现ARM占用很大的市场份额,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI领域
    发表于 10-25 19:13

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    不仅提高了能源的生产效率和管理水平,还为未来的可持续发展提供了有力保障。随着技术的不断进步和应用场景的不断拓展,人工智能将在能源科学领域发挥更加重要的作用。 总结 《AI for Science:
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    ,推动科学研究的深入发展。 总结 通过阅读《AI for Science:人工智能驱动科学创新》第二章,我对AI for Science的技术支撑有了更加全面和深入的理解。我深刻认识到
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的同时,确保其公正性、透明度和可持续性,是当前和未来科学研究必须面对的重要课题。此外,培养具备AI技能的科研人才,也是推动这一领域发展的关键。 4. 激发创新思维 阅读这一章,我被深深启发的是人工智能
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    时间运行或电池供电的设备尤为重要。 高性能 : 尽管RISC-V架构以低功耗著称,但其高性能也不容忽视。通过优化指令集和处理器设计,RISC-V可以在处理复杂的人工智能图像处理任务时表现出色。 三
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    大力发展AI for Science的原因。 第2章科学研究底层的理论模式与主要困境,以及人工智能三要素(数据、算法、算力)出发,对AI
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    人工智能AI芯片的概述

    人工智能AI)技术的快速发展已经成为当今科技领域的热点话题。
    的头像 发表于 02-29 09:10 5281次阅读

    嵌入式人工智能的就业方向有哪些?

    于工业、农业、医疗、城市建设、金融、航天军工等多个领域。在新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17