0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

可拉伸微流控芯片如何实现雨生红球藻的有效分离呢?

微流控 来源:微流控 2023-08-31 14:49 次阅读

在自然界中,雨生红球藻是虾青素含量最丰富的物种之一。许多研究表明,雨生红球藻中虾青素的积累率和总产量均高于其他绿藻,其虾青素含量可达干重的3.0%甚至更高,具有抗衰老、治疗炎症等多种生物功效,被誉为天然虾青素的“浓缩物”。雨生红球藻具有复杂的生命周期,在不同的环境条件下具有不同的细胞形态。通常情况下,雨生红球藻是尺寸较小、虾青素含量较低的游动细胞。在光胁迫条件下,虾青素在尺寸较大的藻细胞中积累。因此,富含虾青素的雨生红球藻的分离对于微藻生物学和食品化学至关重要。

目前已经有多种高通量、高精度和低成本的微流控技术来分离微藻,包括利用外部物理场的方法,例如介电泳、磁泳和声泳来进行微藻分离;也有利用固定的通道结构进行分离的方法,比如惯性聚焦和弹惯性聚焦。与上述分离方法相比,粘弹性-惯性微流控芯片能够在简单的直通道中实现三维聚焦,无需任何外力场或复杂的通道结构。颗粒尺寸是弹惯性聚焦和分离的主要参数,颗粒分离的截止阈值高度依赖于阻塞率,阻塞率是颗粒尺寸与通道水力直径的比率。当阻塞率超过一定值时,大颗粒将发生反向迁移并与小颗粒分离。对于微藻细胞分离,细胞尺寸是预先确定的,调整阻塞率需要改变微流体通道的直径。然而,一旦在现有的刚性微流控器件中完成通道设计,通道几何形状就很难改变,所以目前的刚性器件不能用于分离截止尺寸不确定的微藻。因此开发一种可拉伸微流控器件,能够实时灵活地调整微流控芯片的几何形状,实现微藻分离截止尺寸的动态调整,具有一定的研究价值。

近期,深圳大学闫昇研究员课题组报道了一种制备超拉伸Ecoflex微流控芯片的新方法,实现了雨生红球藻的尺寸可调的粘弹性-惯性分离。相关成果以“Size-tunable elasto-inertial sorting of Haematococcus pluvialis in the ultra-stretchable microchannel”为题发表在国际化学权威杂志《Analytical Chemistry》上。

f9749742-47c1-11ee-97a6-92fbcf53809c.png

图1 超拉伸Ecoflex微流控系统示意图

在这项工作中,团队提出了一种制造超拉伸Ecoflex微流控芯片的新方法,并开发了一种用于雨生红球藻的尺寸可调的粘弹性-惯性分离技术。首先,研究人员使用液态金属(镓)作为模具,在没有等离子体键合的情况下直接制造了Ecoflex微流控芯片,实现了最大500%的拉伸和超过100%的通道尺寸变化。然后,研究人员系统地研究了流量、通道伸长和粒径对粘弹性-惯性颗粒迁移的影响,发现通道伸长可以高效调节颗粒的聚焦流量范围和临界聚焦尺寸。最后,研究人员展示了基于超拉伸Ecoflex微流控芯片的雨生红球藻细胞的无鞘、无标记、动态尺寸可调分离。通过调节通道几何形状,微藻分离通道的分离阈值可以从35 μm调节到15 μm。与其他微藻分离技术相比,该方法显示出优异的分选纯度、产率和可调的微藻分离阈值。

f98aac30-47c1-11ee-97a6-92fbcf53809c.png

图2 雨生红球藻在一进三出通道中的分选示意图

综上所述,该研究利用通道尺寸(>100%拉伸)可以宽范围调制的微流控芯片,对具有宽尺寸分布(5μm~ 65 μm)的微藻细胞进行了尺寸可调分离。这种微藻分离的尺寸分选技术将为微藻的高产和定向进化提供了技术支持。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微流控芯片
    +关注

    关注

    13

    文章

    238

    浏览量

    18700
  • 微流控系统
    +关注

    关注

    1

    文章

    60

    浏览量

    1836

原文标题:可拉伸微流控芯片,实现宽尺寸分布的雨生红球藻的有效分离

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    武汉大学:研究控电化学集成传感器,快速、高效分离和灵敏检测致病菌

    作者提出了一种流体电化学集成传感器(MEIS)来有效分离和检测白色念珠菌。分别制备了三维大孔PDMS支架和金纳米管包覆PDMS电极(Au-NT电极),并将其组装在单通道
    的头像 发表于 06-17 17:29 256次阅读
    武汉大学:研究<b class='flag-5'>微</b><b class='flag-5'>流</b>控电化学集成传感器,快速、高效<b class='flag-5'>分离</b>和灵敏检测致病菌

    一种制造高度可拉伸且可定制化的针电极阵列的方法

    可拉伸针电极阵列可以穿透生物表层组织,并与组织的运动形变相适应,以创的方式对生物体内部进行有针对性的传感和电刺激。
    的头像 发表于 05-09 11:33 367次阅读
    一种制造高度<b class='flag-5'>可拉伸</b>且可定制化的<b class='flag-5'>微</b>针电极阵列的方法

    一种可实现稳定压力传感的新型可拉伸电子皮肤

    现有的电子皮肤会随材料拉伸而降低传感精度。美国得克萨斯大学奥斯汀分校研究人员开发出一种新型可拉伸电子皮肤,解决了这项新兴技术的一个主要难题。
    的头像 发表于 05-09 09:07 272次阅读

    芯片技术的特点 芯片与生物芯片的区别

    比如对于控免疫分析芯片系统,抗体的固定、对通道表面的封闭,显著影响免疫分析的灵敏度,是该类芯片需要重点解决的问题。
    的头像 发表于 03-15 10:36 1359次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术的特点 <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>与生物<b class='flag-5'>芯片</b>的区别

    安泰ATA-7050高压放大器在控细胞分选中的应用

    设计具有特定尺寸和性质的通道网络,可实现对细胞的高效分选与分离。那么高压放大器在该实验系统中有何作用?我们一起来看看吧~
    的头像 发表于 03-01 16:56 229次阅读
    安泰ATA-7050高压放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控细胞分选中的应用

    浅谈芯片技术

    控技术(Micronuidics),或称为芯片实验室(1ab.on.a.chip),是把生物、化学等领域中样品的制备、反应、分离、检测等基本操作集成在一块
    的头像 发表于 03-01 09:13 2037次阅读
    浅谈<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术

    用于多路原位汗液分析的可拉伸、智能可湿性传感贴片

    为了克服这些限制,来自南京大学的孔德圣/陆延青团队提出了一种可拉伸的智能可湿性贴片,用于多路原位汗液分析。该贴片采用了仿生智能可湿性膜,这种膜由图案化泡沫和纳米纤维层压板组成,具有工程润湿性梯度,可选择性地从皮肤中提取汗液并引导其连续流过该贴片。
    的头像 发表于 01-15 16:05 584次阅读
    用于多路原位汗液分析的<b class='flag-5'>可拉伸</b>、智能可湿性传感贴片

    用于生物组织-电子接口的水响应性自适应可拉伸电极

    柔性可拉伸电极是监测人体电生理信息的核心工具。由于生物组织柔软,形状和尺寸各不相同,柔性可拉伸电极与生物组织的接口无法像硬件电路集成那样标准化,因此亟须开发柔性电极与复杂生物组织的标准化快速集成方法。
    的头像 发表于 12-28 17:30 760次阅读
    用于生物组织-电子接口的水响应性自适应<b class='flag-5'>可拉伸</b>电极

    基于液滴流体的芯片系统的研究

     芯片系统 (Microfluidics) 或芯片实验室,是将化学和生物等领域中所涉
    的头像 发表于 11-21 16:30 421次阅读

    控纺丝化学综述与展望

    控技术是一项能够对通道中的流体进行精确和系统操纵的先进技术。该技术能够在平台上灵活组合多功能组件,在
    的头像 发表于 11-19 16:05 705次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控纺丝化学综述与展望

    惯性控器件的制造方法

    在被动控方法中,惯性控因具有简单、易于制造和高通量的特性而被认为是一种良好的过滤和分离方法。
    的头像 发表于 11-02 09:09 354次阅读
    惯性<b class='flag-5'>微</b><b class='flag-5'>流</b>控器件的<b class='flag-5'>微</b>制造方法

    可拉伸导电水凝胶用于应变传感研究获进展

    近日,广东省科学院化工研究所研究员曾炜团队联合五邑大学副教授温锦秀,在与微电子器件结合的可拉伸导电水凝胶用于应变传感研究方面取得新进展。相关研究论文发表于Journal of Materials Chemistry C。
    的头像 发表于 10-18 16:20 306次阅读
    <b class='flag-5'>可拉伸</b>导电水凝胶用于应变传感研究获进展

    利用喷墨打印技术搭建一套制备高性能一维可拉伸纤维形器件

    1. 通过一套自制的精密旋转喷墨打印设备,在超低直径纤维表面(最小打印线宽133 µm,可打印纤维直径低至500 µm,曲率达到4000 mˉ¹)实现高精度和可定制的加工,并用于构筑高性能可穿戴1D可拉伸电子器件。
    的头像 发表于 07-25 16:58 913次阅读
    利用喷墨打印技术搭建一套制备高性能一维<b class='flag-5'>可拉伸</b>纤维形器件

    芯片在液体活检中的应用

    作为一种新兴的分析技术,芯片已成功应用于癌症诊断和监测。一方面,控平台的使用可以有效
    发表于 07-25 09:39 497次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>在液体活检中的应用