电子发烧友网报道(文/周凯扬)从最近英伟达公布的财报中就可以看出,AI应用的火热使其赚得盆满钵满,原本就在AI软硬件生态称王的英伟达,现今更是如日中天。而这样的处境也让不少AI芯片初创公司不好过,他们的产品有的还没落地,有的则难以与A100、H100这样的产品匹敌。这几年沉寂下去的AI芯片初创公司着实不少,但还是有的厂商敢于继续往这个市场里钻。
水平扩展性的限制
随着AI/ML的模型越来越大,甚至是以5年内翻4万倍的速度提升,要想在硬件上跟上软件进度已经越来越难了。可即便如此,从16nm到4nm,从低精度到脉动阵列,都给了我们巨大的优势去追随这些大模型。
但运行这些大模型终究不是靠单个芯片的力量,而是整个规模集群需要面临的问题,所以这就牵扯到了水平扩展性。工艺制程的提高带来了5倍的性能提升,芯片架构带来了14倍的性能提升,而水平扩展则要实现600倍的性能提升,才能满足未来的AI/ML计算要求。这也就是目前AI计算存在的问题,大模型往往需要更大的内存、更高的算力和更大的带宽,随着设备数量越多,这三大硬件要求的分配复杂程度就变得越来越高。
比如在GPU上就已经尝试了不少并行扩展方案,比如数据并行、流水线模型并行或张量模型并行等,但以上方案往往都会受到内存、带宽和参数量的限制,并没有单一通用的解决方案,大模型往往需要同时结合这三种方案,所以扩展效率不高。AI芯片公司Cerebras则想出了一个在大规模集群下提高水平扩展性的解决方案。
Cerebras的WSE
要说在AI芯片的初创公司里,走着独立无二路线的公司,Cerebras绝对能排得上名号。2019年,他们推出了WSE,一个晶圆大小的AI处理器,到了2021年,他们又推出了第二代的WSE-2,采用更先进的工艺将单个处理器的核心数推进至85万核。而这次Hot Chips上,他们则展示了用于对抗英伟达的解决方案。
WSE-2与GPU大小对比 / Cerebras
Cerebras选择了将内存和计算解耦的方案,利用内存扩展技术MemoryX,将模型权重存储在外部,然后将权重传输给WSE-2组成的CS-2系统,CS-2再将梯度传给外部存储。Cerebras还打造了一个互联方案SwarmX,用于连接多个CS-2系统,从而提高扩展性。
以Cerebras搭建的Andromeda超算为例,该超算由16个CS-2系统组成,拥有1350万个AI优化核心,稀疏算力高达1ExaFLOPs,稠密算力高达120PetaFLOPs。在这样强大的算力下,训练大模型只要几周的时间。而且在Cerebras不同规模的集群上,不同参数的大模型可以共享同样的代码,以同样的方式训练,省去了不少开发时间。
除了Andromeda以外,Cerebras也已经开始了下一个AI超算的部署,由64个CS-2系统组成的Condor Galaxy 1,该超算的算力将扩展至4ExaFLOPs的稀疏算力。而Condor Galaxy 1名字后的1,也意味着这仅仅是单个超算中心所用的系统而已,未来他们计划在2024年底之前扩展为9个超算中心,分布在美国各地,构建最大的分布式超算网络,总算力高达36ExaFLOPs,是英伟达Israel-1超算的9倍,是谷歌最大TPUv4集群的4倍。
写在最后
单从扩展性和性能的角度来看,Cerebras确实已经做到了一个新的高度。但对于购置这些GPU或AI芯片的云服务或互联网公司来说,GPU或许是一个更加通用的资源,在AI技术日新月异的当下,GPU总能凭借自己的软硬件生态快速找到自己的一席之地,并在高性能的王座上稳坐一段时间。这也就是AI爆款应用的市场导向决定的了,性能固然重要,但抢占先机才是最关键的一环。
水平扩展性的限制
随着AI/ML的模型越来越大,甚至是以5年内翻4万倍的速度提升,要想在硬件上跟上软件进度已经越来越难了。可即便如此,从16nm到4nm,从低精度到脉动阵列,都给了我们巨大的优势去追随这些大模型。
但运行这些大模型终究不是靠单个芯片的力量,而是整个规模集群需要面临的问题,所以这就牵扯到了水平扩展性。工艺制程的提高带来了5倍的性能提升,芯片架构带来了14倍的性能提升,而水平扩展则要实现600倍的性能提升,才能满足未来的AI/ML计算要求。这也就是目前AI计算存在的问题,大模型往往需要更大的内存、更高的算力和更大的带宽,随着设备数量越多,这三大硬件要求的分配复杂程度就变得越来越高。
比如在GPU上就已经尝试了不少并行扩展方案,比如数据并行、流水线模型并行或张量模型并行等,但以上方案往往都会受到内存、带宽和参数量的限制,并没有单一通用的解决方案,大模型往往需要同时结合这三种方案,所以扩展效率不高。AI芯片公司Cerebras则想出了一个在大规模集群下提高水平扩展性的解决方案。
Cerebras的WSE
要说在AI芯片的初创公司里,走着独立无二路线的公司,Cerebras绝对能排得上名号。2019年,他们推出了WSE,一个晶圆大小的AI处理器,到了2021年,他们又推出了第二代的WSE-2,采用更先进的工艺将单个处理器的核心数推进至85万核。而这次Hot Chips上,他们则展示了用于对抗英伟达的解决方案。
WSE-2与GPU大小对比 / Cerebras
Cerebras选择了将内存和计算解耦的方案,利用内存扩展技术MemoryX,将模型权重存储在外部,然后将权重传输给WSE-2组成的CS-2系统,CS-2再将梯度传给外部存储。Cerebras还打造了一个互联方案SwarmX,用于连接多个CS-2系统,从而提高扩展性。
以Cerebras搭建的Andromeda超算为例,该超算由16个CS-2系统组成,拥有1350万个AI优化核心,稀疏算力高达1ExaFLOPs,稠密算力高达120PetaFLOPs。在这样强大的算力下,训练大模型只要几周的时间。而且在Cerebras不同规模的集群上,不同参数的大模型可以共享同样的代码,以同样的方式训练,省去了不少开发时间。
除了Andromeda以外,Cerebras也已经开始了下一个AI超算的部署,由64个CS-2系统组成的Condor Galaxy 1,该超算的算力将扩展至4ExaFLOPs的稀疏算力。而Condor Galaxy 1名字后的1,也意味着这仅仅是单个超算中心所用的系统而已,未来他们计划在2024年底之前扩展为9个超算中心,分布在美国各地,构建最大的分布式超算网络,总算力高达36ExaFLOPs,是英伟达Israel-1超算的9倍,是谷歌最大TPUv4集群的4倍。
写在最后
单从扩展性和性能的角度来看,Cerebras确实已经做到了一个新的高度。但对于购置这些GPU或AI芯片的云服务或互联网公司来说,GPU或许是一个更加通用的资源,在AI技术日新月异的当下,GPU总能凭借自己的软硬件生态快速找到自己的一席之地,并在高性能的王座上稳坐一段时间。这也就是AI爆款应用的市场导向决定的了,性能固然重要,但抢占先机才是最关键的一环。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
AI
+关注
关注
87文章
31097浏览量
269431 -
英伟达
+关注
关注
22文章
3791浏览量
91313
发布评论请先 登录
相关推荐
英伟达超越苹果成为市值最高 英伟达取代英特尔加入道指
苹果公司的市值,重新成为全球市值最高的公司。 在AI领域,英伟达正疯狂奔跑,我们看到有外媒报道英伟
AI芯片巨头英伟达涨超4% 英伟达市值暴增7500亿
谁是美股最靓的仔?在人工智能浪潮之下AI芯片巨头英伟达肯定有一席之地,特别是现在全球资本市场动荡之际,业界分析师多认为英伟
英伟达收购软件初创公司Shoreline
近日,全球知名的图形处理器制造商英伟达(NVIDIA)宣布了一项重要的收购计划,将以约1亿美元的价格收购软件初创公司Shoreline。这次收购不仅体现了
英伟达拟收购软件初创公司Shoreline,强化AI软件生态
近日,据知情人士透露,全球领先的图形处理器制造商英伟达已达成协议,将收购面向软件开发人员的初创公司Shoreline.io。这次收购对Shoreline的估值达到了约1亿美元,标志着
英伟达Blackwell芯片已投产,预告未来AI芯片发展
英伟达创始人兼CEO黄仁勋近日宣布,公司旗下的Blackwell芯片已正式投入生产。这款芯片是英伟
英伟达首席执行官黄仁勋:AI模型推动英伟达AI芯片需求
近来,以ChatGPT为代表的AI聊天机器人已经导致英伟达AI芯片供应紧张。然而,随着能够创造视频并进行近似人类交流的新型
英伟达涉足定制芯片,聚焦云计算与AI市场
作为全球高端AI芯片市场80%份额的霸主,英伟达自2023以来股价上涨超过两倍,2024年市值高达1.73万亿美元。知名公司如微软、Ope
英伟达向聊天机器人初创公司Kore.ai注资1.5亿美元
据报道,英伟达向聊天机器人制造商Kore.ai注资1.5亿美元。这一投资是英伟达在人工智能领域的最新布局,显示出其对人工智能技术的坚定信心和
今日看点丨英伟达1.5亿美元注资聊天机器人初创公司Kore.ai;知名上市公司涉嫌重大财务造假
变得越来越依赖其高端芯片。Kore.ai 周二表示,FTV Capital领投了该轮融资,这家总部位于奥兰多的初创公司的企业客户包括可口可乐公司
发表于 01-31 09:53
•888次阅读
评论