0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

傅里叶变换十大公式 傅里叶变换的十大性质

工程师邓生 来源:未知 作者:刘芹 2023-09-07 16:14 次阅读

傅里叶变换十大公式 傅里叶变换的十大性质

傅里叶变换是一种重要的数学工具,在许多领域中都有广泛的应用。傅里叶变换可以将一个时域信号转化为频域信号,分析不同频率成分在信号中的占比情况。由于傅里叶变换具有很多有用的性质,因此在信号处理、通信和控制等领域中得到了广泛的应用。下面就来介绍傅里叶变换的十大公式和性质。

一、傅里叶正变换

一般形式:

$F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt$

其中,$f(t)$为时域信号,$F(\omega)$为傅里叶变换后的频域信号。

二、傅里叶逆变换

一般形式:

$f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega$

其中,$F(\omega)$为频域信号,$f(t)$为傅里叶变换后的时域信号。

三、时域平移性

$f(t-T) \xrightarrow{\text{FT}} e^{-j\omega T}F(\omega)$

即信号在时间域平移$T$秒,对应的频域信号乘以$e^{-j\omega T}$。

四、频域平移性

$e^{j\omega_0 t}f(t) \xrightarrow{\text{FT}} F(\omega-\omega_0)$

即信号在时域乘以一个复指数$e^{j\omega_0 t}$,对应的频域信号在$\omega$轴上向右平移$\omega_0$。

五、时域对称性

$f(-t) \xrightarrow{\text{FT}} F(-\omega)$

即信号在时间域取反,对应的频域信号在$\omega$轴上关于原点对称。

六、频域对称性

$f(t) \xrightarrow{\text{FT}} F(\omega)$

则有

$f^*(t) \xrightarrow{\text{FT}} F^*(-\omega)$

其中,$*$表示复共轭。即信号取复共轭,对应的频域信号在$\omega$轴上关于原点对称。

七、频域保持

$f(t)e^{j\omega_0t} \xrightarrow{\text{FT}} F(\omega-\omega_0)$

即信号在时域乘以一个正弦波,对应的频域信号不变,但在$\omega$轴上向右平移$\omega_0$。

八、卷积定理

$f(t)*g(t) \xrightarrow{\text{FT}} F(\omega)G(\omega)$

即两个信号卷积在时域相当于在频域上相乘。

九、功率谱密度

$S(\omega) = |F(\omega)|^2$

即傅里叶变换后的频谱的模平方。

十、时域微分

$\frac{d^n}{dt^n}f(t) \xrightarrow{\text{FT}} (j\omega)^nF(\omega)$

即原始信号在时域进行$n$次微分,对应的频域信号乘以$(j\omega)^n$。

以上是傅里叶变换的十大公式和性质。这些公式和性质在实际应用中是非常有用的。例如,在调制解调中,频域平移性和时域平移性可以用于带通滤波器的设计;功率谱密度可以用来分析信号的能量分布情况;卷积定理可以用于信号处理中的滤波器设计等。因此,掌握这些公式和性质对于进行信号处理和通信系统设计是非常重要的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    161

    文章

    7892

    浏览量

    179204
  • 调制解调器
    +关注

    关注

    3

    文章

    862

    浏览量

    39059
  • 傅里叶变换
    +关注

    关注

    6

    文章

    442

    浏览量

    42739
收藏 人收藏

    相关推荐

    DFT与离散时间傅里叶变换的关系 DFT在无线通信中的应用

    DFT与离散时间傅里叶变换(DTFT)的关系 DFT(离散傅里叶变换)与DTFT(离散时间傅里叶变换)都是信号处理中的重要工具,用于将信号从时域转换到频域。它们之间存在一定的联系和区别: 定义与对象
    的头像 发表于 12-20 09:21 778次阅读

    傅立叶变换的基本概念 傅立叶变换在信号处理中的应用

    傅里叶变换的基本概念 傅里叶变换是一种数学变换,它能够将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。这种变换在不同的研究领域有多种变体形式,如连
    的头像 发表于 12-06 16:48 602次阅读

    常见傅里叶变换错误及解决方法

    傅里叶变换是一种数学工具,用于将信号从时域转换到频域,以便分析其频率成分。在使用傅里叶变换时,可能会遇到一些常见的错误。 1. 采样定理错误 错误描述: 在进行傅里叶变换之前,没有正确地采样信号
    的头像 发表于 11-14 09:42 1271次阅读

    傅里叶变换的基本性质和定理

    傅里叶变换是信号处理和分析中的一项基本工具,它能够将一个信号从时间域(或空间域)转换到频率域。以下是傅里叶变换的基本性质和定理: 一、基本性质 线性
    的头像 发表于 11-14 09:39 1411次阅读

    经典傅里叶变换与快速傅里叶变换的区别

    经典傅里叶变换与快速傅里叶变换(FFT)在多个方面存在显著的区别,以下是对这两者的比较: 一、定义与基本原理 经典傅里叶变换 : 是一种将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数
    的头像 发表于 11-14 09:37 572次阅读

    如何实现离散傅里叶变换

    离散傅里叶变换(DFT)是将离散时序信号从时间域变换到频率域的数学工具,其实现方法有多种,以下介绍几种常见的实现方案: 一、直接计算法 直接依据离散傅里叶变换公式进行计算,这种方法最简
    的头像 发表于 11-14 09:35 569次阅读

    傅里叶变换与卷积定理的关系

    傅里叶变换与卷积定理之间存在着密切的关系,这种关系在信号处理、图像处理等领域中具有重要的应用价值。 一、傅里叶变换与卷积的基本概念 傅里叶变换 : 是一种将时间域(或空间域)信号转换为频率域信号
    的头像 发表于 11-14 09:33 1009次阅读

    傅里叶变换与图像处理技术的区别

    在数字信号处理和图像分析领域,傅里叶变换和图像处理技术是两个核心概念。尽管它们在实际应用中常常交织在一起,但它们在本质上有着明显的区别。 傅里叶变换的基本原理 傅里叶变换是一种将信号从时域(或空间域
    的头像 发表于 11-14 09:30 472次阅读

    傅里叶变换在信号处理中的应用

    在现代通信和信号处理领域,傅里叶变换(FT)扮演着核心角色。它不仅帮助我们分析信号的频率成分,还能用于滤波、压缩和信号恢复等多种任务。 傅里叶变换的基本原理 傅里叶变换是一种将信号从时域转换到频域
    的头像 发表于 11-14 09:29 2370次阅读

    傅里叶变换的数学原理

    傅里叶变换的数学原理主要基于一种将函数分解为正弦和余弦函数(或复指数函数)的线性组合的思想。以下是对傅里叶变换数学原理的介绍: 一、基本原理 傅里叶级数 :对于周期性连续信号,可以将其表示为傅里叶
    的头像 发表于 11-14 09:27 884次阅读

    关于动力学方程能否用matlab进行傅里叶变换的问题。

    有没有大神能讲一下动力学方程能不能用matlab进行傅里叶变换啊?
    发表于 10-11 09:11

    请问快速傅里叶变换dsp库在那里下载?

    快速傅里叶变换dsp库在那里下载
    发表于 04-02 08:18

    如何用STM32F103做傅里叶变换

    Hi,想问下,用STM32F103做傅里叶变换,请问例程在那里下载?
    发表于 03-27 07:52

    傅里叶变换基本原理及在机器学习应用

    连续傅里叶变换(CFT)和离散傅里叶变换(DFT)是两个常见的变体。CFT用于连续信号,而DFT应用于离散信号,使其与数字数据和机器学习任务更加相关。
    发表于 03-20 11:15 1097次阅读
    <b class='flag-5'>傅里叶变换</b>基本原理及在机器学习应用

    一文道破傅里叶变换的本质,优缺点一目了然

    傅里叶变换公式为: 可以把傅里叶变换也成另外一种形式: 可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频
    发表于 03-12 16:06