0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于芯片的拉曼光谱技术来监测患者血液中的药物浓度

MEMS 来源:MEMS 2023-09-14 09:28 次阅读

据麦姆斯咨询报道,总部位于比利时的初创公司Axithra主要开发基于芯片的拉曼光谱技术来监测患者血液中的药物浓度,近期已筹集了1000万欧元的种子资金。

由imec和根特大学(Ghent University)孵化而出的Axithra表示,其平台可以为更快、更个性化的疾病护理铺平道路,例如确保患者接受正确剂量的抗生素来治疗感染,从而减少重症监护的时间。据称,Axithra的拉曼光谱方法将imec世界领先的半导体工艺知识与根特大学的光子学研究(独特的片上拉曼专业知识)相结合。

此轮种子资金包括日本滨松光子(Hamamatsu Photonics)的支持,预计将确保为期两年的治疗药物监测(TDM)应用领域的研发工作。

imec自己的风险投资部门与专注于医疗保健的Kurma Partners共同领投了本轮融资,并得到了Qbic、Noshaq、White Fund、Wallonie Entreprendre和总部位于西班牙的测试巨头Werfen Diagnostics的支持。

Axithra首席执行官(CEO)Leander Van Neste(曾任根特大学客座教授,拥有癌症遗传学背景)表示:“我相信,Axithra可以共同打造治疗药物监测平台,成为真正的‘游戏规则改变者’。由于我们平台的简单性和快速性,即使在快速变化的条件下或在各种环境中(包括传统医院实验室之外),我们也可以为每个患者定制药物治疗方案。”

根特大学硅光子学教授Roel Baets补充道:“我们的片上拉曼技术是Axithra解决方案的基础。集成在光子芯片上使这项技术更加灵敏。”

Axithra解释说,对于许多药物来说,正确的剂量对于确保患者获得最大利益至关重要。这是患有重病或虚弱患者的医院单位持续关注的焦点,这些患者经常随着时间的推移表现出生理变化,例如重症监护室或肿瘤科的患者。

“当剂量不足时,药物就会失去效力,而剂量过多则可能会导致有毒的、可能致命的副作用。”Axithra继续说道,“Axithra的拉曼光谱平台旨在快速、准确地测量血液中的药物浓度,从而能够根据需要及时调整剂量。”

Axithra拉曼光谱平台的第一个应用将是测量患者血液中β-内酰胺抗生素的浓度,以便个性化剂量。此类抗生素是迄今为止最常用于治疗或预防细菌感染的抗生素,每年有数百万重症监护患者使用。Axithra拉曼光谱平台将确保能够针对个体患者提供最佳的治疗方案。随着时间的推移,其它药物类别将被纳入治疗计划中。

根特大学医院教授、欧洲重症监护医学会候任主席Jan De Waele在imec宣布本轮融资时表示:“鉴于重症监护患者之间的巨大差异,这一发展将使我们能够更好地治疗严重感染的患者,并保护他们免受可能的伤害。由于当前的解决方案周转时间较长,Axithra拉曼光谱平台将帮助我们更快地进行干预,改善严重感染的结果并缩短患者在重症监护病房的住院时间,从而降低成本。”

imec表示,Axithra是一个为半导体行业开发的工艺现在如何应用于生命科学的“完美例子”。

imec风险投资基金imec.xpand合伙人Frank Bulens表示:“很高兴看到投资者对imec和根特大学的这一新孵化项目给予如此广泛的支持。这一轮融资将使这家初创公司Axithra实现其原型概念验证的里程碑,为筹集进一步融资以将产品推向市场奠定了良好的基础。”







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 硅光子
    +关注

    关注

    6

    文章

    87

    浏览量

    14848
  • 光子芯片
    +关注

    关注

    3

    文章

    98

    浏览量

    24394
  • 拉曼光谱
    +关注

    关注

    0

    文章

    83

    浏览量

    2721

原文标题:利用拉曼光谱技术监测体内药物浓度,Axithra获1000万欧元的种子资金

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    使用光谱检测组织的恶性变化

    介绍 准确、快速、无创地检测和诊断组织的恶性疾病是生物医学研究的重要目标。漫反射、荧光光谱光谱等光学方法都已被研究作为实现这一目标的
    的头像 发表于 10-17 06:32 110次阅读
    使用<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>检测组织的恶性变化

    血糖监测仪解决方案

    。 02方案概述 血糖监测仪用于确定血液中大致的血糖浓度,是面向1型和2型糖尿病患者的重要家用血糖监测设备。只需一次性试纸上的一小滴
    发表于 10-09 10:29

    紫外光谱在微晶硅薄膜结晶度分析的优势

    硅薄膜的结晶度(晶体结构所占的比例)对光伏电池性能至关重要。由于大多数硅薄膜表征信号会被衬底信号掩盖,因此难以确定其结晶度。光谱、椭偏光谱、透射电子显微镜(TEM)等
    的头像 发表于 09-10 08:06 251次阅读
    紫外<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>在微晶硅薄膜结晶度分析<b class='flag-5'>中</b>的优势

    光谱的原理及其应用

    一、光谱的原理 光谱(Raman spectra)是一种散射
    的头像 发表于 08-26 06:22 261次阅读

    精准捕捉信号——时间门控光谱系统实验结果深度解析

    在上篇的文章(详见文末目录:闪光科技推出高性能时间门控光谱系统,为科学研究注入新动力!),一文,我们详细介绍了时间门控
    的头像 发表于 08-13 10:38 304次阅读
    精准捕捉<b class='flag-5'>拉</b><b class='flag-5'>曼</b>信号——时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>系统实验结果深度解析

    厘米级微型光谱

    (SNR)受限、传感器像素间的量子效率(QE)变化较大、共焦性或深度分层差、激光波长和激光器光功率不稳定、激光光学反馈灵敏度高以及功耗高。 近日,丹麦技术大学的科研团队提出了一种厘米级微型
    的头像 发表于 07-09 06:26 274次阅读
    厘米级微型<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>仪

    光谱仪原理及应用

    一、光谱仪的原理 光谱仪的原理是基于印度科学家C.V.
    的头像 发表于 07-01 06:28 586次阅读

    美能晶化率测试仪:光谱成像技术在HJT工艺的应用与优化

    光谱成像主要用于获取物质的化学信息及其空间分布。美能晶化率测试仪通过高光谱分辨率和低杂散光光谱仪,大幅提升了
    的头像 发表于 06-29 08:33 288次阅读
    美能晶化率测试仪:<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>成像<b class='flag-5'>技术</b>在HJT工艺<b class='flag-5'>中</b>的应用与优化

    时间门控光谱的创新驱动力——SPAD的突破与应用

    ◆◆◆◆时间门控光谱的创新驱动力SPAD的突破与应用◆◆◆◆光谱
    的头像 发表于 06-19 08:16 418次阅读
    时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的创新驱动力——SPAD的突破与应用

    探索光谱的奇妙世界:从原理到应用

    光谱是一种非常强大的材料分析工具,可用于探索研究碳质和无机材料的特征,提供其物相、功能和缺陷的有用信息等。此外,表面增强
    的头像 发表于 06-12 17:08 462次阅读
    探索<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的奇妙世界:从原理到应用

    可实现较高效率的单分子检测的数字胶体增强光谱

    该研究针对表面增强光谱领域内定量的挑战,系统阐述了基于数字胶体增强光谱(dCERS)的定
    的头像 发表于 04-23 09:07 540次阅读
    可实现较高效率的单分子检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>

    用于单分子无标记定量检测的数字胶体增强光谱技术

    光谱是一种指纹式的、具有分子结构特异性的非弹性散射光谱。通过表面增强
    的头像 发表于 04-22 14:25 535次阅读
    用于单分子无标记定量检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b><b class='flag-5'>技术</b>

    一文解析散射和光谱

    光谱是一种功能强大且用途广泛的分析技术,用于研究分子和材料样品。该技术基于光的非弹性散射,也称为
    的头像 发表于 03-29 11:36 1005次阅读
    一文解析<b class='flag-5'>拉</b><b class='flag-5'>曼</b>散射和<b class='flag-5'>光谱</b>学

    先进的光谱技术

    图1:药物乳液的共焦图像。油(绿色)、活性药物成分(蓝色)和硅杂质(红色)的化学分布如图所示 由于正常
    的头像 发表于 01-15 06:35 329次阅读
    先进的<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b><b class='flag-5'>技术</b>

    光谱装置的布局

    图1:光谱装置。 实际上,每个装置都包括一个激发样品的激光器和一个收集发射信号的探测器。额外的光学器件集成到系统
    的头像 发表于 01-10 06:35 370次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>装置的布局