0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Zero Point Motion利用腔光力学大幅提高惯性传感精度

MEMS 来源:麦姆斯咨询 2023-09-18 15:32 次阅读

据麦姆斯咨询报道,Zero Point Motion是一家总部位于英国布里斯托的无晶圆厂(Fabless)硅芯片初创公司,公司面向精确运动跟踪和导航应用,利用光的量子特性研发运动感测器件,据称,其传感器精度可以比当前消费类MEMS惯性传感器高100~10000倍。Zero Point Motion于2021年完成了由Foresight Williams领投的258万英镑种子轮融资。近期,该公司接受了媒体采访,麦姆斯咨询带您初步了解这家量子传感领域的新星。

Q:请简要介绍贵公司的历史及现状。

A:Zero Point Motion(ZPM)创立于2020年,并在2021年底完成了258万英镑的种子轮融资。ZPM致力于开发光学增强的惯性传感器,并且可以利用可扩展的工艺制造。这是英国企业首次将目光投向大批量惯性传感器领域。ZPM的技术增强了具有谐振光学读出的芯片级加速度计和陀螺仪,从而实现在室内或地下等没有GPS信号的环境中提供高精度定位。这些经典传感器对于无人机、车辆、机器人和精密自动化制造等自动化平台至关重要,它们为基于量子技术的惯性传感器铺平了发展道路。ZPM迄今已申请了三项专利,两项在英国获得授权,一项正在审查中,还有更多专利即将提交。

Q:请介绍一下公司的的创始人及其背景。

A:ZPM由Ying Lia Li(简称:Lia)博士创立,目前担任公司的首席执行官(CEO)。ZPM的技术基于Lia在光力学和量子传感领域的研究基础,结合学术研究和产业实践经验将其创新工作商业化。Lia进一步扩展了她在回音壁模式方向的博士研究成果,并将其与在BAE systems公司制造惯性传感器的产业经验相结合,开发了一种芯片级光机械传感器,相比目前的消费级MEMS惯性传感器性能提高了100~10000倍。

Lia是Innovate UK 2022年女性创新奖获得者之一,并在Sensors Converge的2023年最佳传感器奖中被评为年度女性。

Q:贵公司的产品/服务有什么特别之处?

A:ZPM正在面向高性能大众市场开发惯性测量单元(IMU)及传感器。我们申请专利的技术方案结合了MEMS和硅光子学技术来测量加速度和角速率,其噪声相比传统的MEMS电容式测量方案低100-10000倍。这使我们能够实现高性能的同时,改善典型国防和航空航天级加速度计、陀螺仪存在的尺寸和成本问题。

ZPM方案的背后应用了“腔光力学(cavity optomechanics)”,该技术已经彻底改变了引力波探测和量子力学。现在,是时候利用它来变革日常定位和导航应用了。

我们通过利用光学读出代替电子读出来解决噪声问题。ZPM方案采用芯片级光学结构来捕获激光,构建了对任何机械运动(即使运动小于原子大小)都极其敏感的共振条件。我们利用现有的传感器供应链,并将其与成熟的硅光子供应链相结合,以确保高良率和低成本。我们的技术也可以被推向量子极限,尽管这是一个长期的愿景。

这将开辟很多市场和应用,ZPM的惯性传感器可以带来立竿见影的积极影响。ZPM的惯性传感器将提高无人机等自动化平台的完整性,使其能够以更高的速度、安全性以及更紧密的编队运行,并在面对大量扬尘等影响摄像头的情况下支持关键的起飞和降落。

对于光学图像稳定或运动捕捉等需要高精度的应用,ZPM的传感器可以检测到比以往更小的运动,从而为可穿戴设备提供亚毫米级跟踪,为图像拍摄提供亚像素级稳定性。

ZPM的惯性传感器使客户能够更长时间、更准确地跟踪运动,尤其适用于更高水平的车辆自动驾驶,无需GNSS定位修正,行驶数公里后仅产生亚米级误差。ZPM将释放令人兴奋的室内导航应用前景,实现建筑物内的跨楼层跟踪,在医院和体育场内进行数小时的行人跟踪,还可应用于仓库内的资产定位和制造业的机器人引导等。

Q:贵公司目前的运营现状如何?

A:我们正在开发和完善我们的传感技术,不断迭代我们的微机械和光子芯片,然后构建封装的惯性传感器原型和演示器件。我们还在建设重要的供应链伙伴关系,已在与第一批客户接洽中。

2022年底,我们获得了为期12个月、价值14.4万英镑的MyWorld项目资助,与学者合作展示可以同时监测佩戴者手指运动和脉搏力的传感器。这是创意领域尚未探索的独特功能。这项技术可能会带来变革,不仅是VR应用,甚至是医疗保健应用。

我们还在对不同应用的惯性传感器性能进行仿真,以更好地了解客户的需求,从无人机的高速三维轨迹到GPS信号弱或没有信号环境中的汽车自动导航等。

Q:客户端的接洽进展如何?

A:我们正在进行一些原型演示,还有更多的原型迭代周期。这意味着我们将通过最初的终端用户测试来改进并优化惯性传感器的性能。来自终端用户的反馈是产品开发中最重要的部分。

Q:量子传感将如何帮助解决当前最紧迫的问题?

A:传感器使我们能够更了解自己、我们使用的机器以及周围的世界。但目前的传感器并没有达到真正的感知极限,而这受控于量子物理学。我们的目标是让更多的用户获得比以往任何时候都更高精度的运动检测。即使不包括量子特性,我们也可以帮助应对一些社会挑战,例如:

- 用于家庭医疗或远程医疗的运动捕捉;

- 协作机器人的自动化,提高安全性等;

- 在荒凉或危险地区协助导航。

Q:请介绍贵公司未来的发展愿景。

A:ZPM的愿景是成为英国第一家大批量惯性传感器供应商,每年的出货量力争超过1000万颗。ZPM的惯性传感器可服务于一系列应用,包括智慧工厂的自主移动机器人,以及工业环境中的资产和员工跟踪等。随着我们的产品变得更小、制造成本更低,它们还将服务于家用电器,以实现智能家居,如智能扫地机和割草机等。其中的一个关键点,是确保我们的传感器是芯片级的,从而用于虚拟和增强现实(AR/VR)设备、智能手机和智能手表,降低AR体验中的图像失真和模糊,解决复杂室内环境(如机场和医院)中的行人室内导航等挑战。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2547

    文章

    50522

    浏览量

    751380
  • 自动化
    +关注

    关注

    29

    文章

    5498

    浏览量

    79042
  • 量子传感器
    +关注

    关注

    4

    文章

    72

    浏览量

    7796

原文标题:Zero Point Motion利用腔光力学大幅提高惯性传感精度

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    爱普生(EPSON) 惯性测量单元(IMU)、陀螺仪传感器等模块应用领域选型介绍

    爱普生(EPSON)惯性测量单元(IMU)、陀螺仪传感器等模块应用领域选型介绍EPSON传感器包括XV7011BB等单轴高精度陀螺仪和M-G365/370等多型已经量产的六轴高
    的头像 发表于 09-02 14:58 493次阅读
    爱普生(EPSON) <b class='flag-5'>惯性</b>测量单元(IMU)、陀螺仪<b class='flag-5'>传感</b>器等模块应用领域选型介绍

    如何在激光雷达和接近检测中利用高速比较器提高精度

    电子发烧友网站提供《如何在激光雷达和接近检测中利用高速比较器提高精度.pdf》资料免费下载
    发表于 09-02 09:33 0次下载
    如何在激光雷达和接近检测中<b class='flag-5'>利用</b>高速比较器<b class='flag-5'>提高精度</b>

    OPT4001 高速高精度数字环境传感器数据表

    电子发烧友网站提供《OPT4001 高速高精度数字环境传感器数据表.pdf》资料免费下载
    发表于 08-12 10:40 13次下载
    OPT4001 高速高<b class='flag-5'>精度</b>数字环境<b class='flag-5'>光</b><b class='flag-5'>传感</b>器数据表

    【行业前沿】量子技术+惯性导航,美国海军研究实验室的最新研究成果

    和可靠的导航解决方案。美国海军研究实验室(NRL)最近开发出了一种新型量子导航工具——连续3D冷却原子束干涉仪(Continuous 3D-Cooled Atom Beam Interferometer)。这种装置是一种新型的量子技术惯性导航工具,利用量子技术,
    的头像 发表于 05-11 10:17 562次阅读

    基于原子体系的量子惯性传感器研究现状综述

    惯性传感器的性能直接决定惯性导航系统的精度。基于原子体系的量子惯性传感器有望在更小体积和更低成本
    的头像 发表于 05-10 09:13 810次阅读
    基于原子体系的量子<b class='flag-5'>惯性</b><b class='flag-5'>传感</b>器研究现状综述

    利用碲化铋拓扑绝缘体纳米薄膜,实现近红外微纳结构光学共振

    光学共振调控、-物质相互作用、光通信、光子集成等方面具有重要应用。如何实现超薄光学共振一直是研究者关注的热点和难点问题。
    的头像 发表于 04-22 09:49 480次阅读
    <b class='flag-5'>利用</b>碲化铋拓扑绝缘体纳米薄膜,实现近红外微纳结构光学共振<b class='flag-5'>腔</b>

    什么是光学谐振

    。 光学谐振有两个作用,一个是提供正反馈,一个是控制内振荡光束的特征。 二、光学谐振的基本概念 图1 激活介质实现了粒子数反转后就能产生光放大。谐振的作用是选择频率一定、方向一
    的头像 发表于 03-15 06:34 900次阅读
    什么是光学谐振<b class='flag-5'>腔</b>?

    推荐一个好用的高精度MEMS惯性测量单元

    无锡瑞吉星电子的RJX-IMU-164系列; 参数如下: 一 、概述 RJX-IMU-16460高精度惯性测量单元是一款小型高精度MEMS惯性测量单元,可与ADIS-16460实现原位
    发表于 01-18 13:46

    松下推出6合1惯性传感提高汽车安全性和稳定性

    新款惯性传感器符合ISO26262功能安全标准中定义的最高汽车安全完整性等级(ASIL-D)。
    的头像 发表于 12-24 17:53 842次阅读

    如何提高AD9748精度

    变化还是超过一点多mV,RSet为6K,单端输出,满量程输出为320mV,负载50欧,能否通过其他办法,提高精度,达到1/4mV,谢谢,
    发表于 12-22 07:50

    皮牛级光纤微力传感器设计及工作原理

    传统光纤力学传感器一般使用光纤拼接微、光纤布拉格光栅、悬臂梁等方式进行力学传感。考虑到上述传感
    发表于 12-20 11:42 712次阅读
    皮牛级光纤微力<b class='flag-5'>传感</b>器设计及工作原理

    传感器最新发展可大幅提高BLDC电机控制性能

    电子发烧友网站提供《传感器最新发展可大幅提高BLDC电机控制性能.pdf》资料免费下载
    发表于 11-23 09:40 0次下载
    <b class='flag-5'>传感</b>器最新发展可<b class='flag-5'>大幅</b><b class='flag-5'>提高</b>BLDC电机控制性能

    惯性传感器原理是什么 WHEELTEC N100模块介绍

    全称Inertial Measurement Unit,惯性测量单元,主要用来检测和测量加速度与旋转运动的传感器。 其原理是采用惯性定律实现的,这些传感器从超小型的的MEMS
    的头像 发表于 11-22 17:52 3353次阅读

    利用集成式MEMS惯性传感器改善工业控制

    电子发烧友网站提供《利用集成式MEMS惯性传感器改善工业控制.pdf》资料免费下载
    发表于 11-22 16:21 0次下载
    <b class='flag-5'>利用</b>集成式MEMS<b class='flag-5'>惯性</b><b class='flag-5'>传感</b>器改善工业控制

    气体压力传感精度的重要性及提高方法

    气体压力传感精度对于许多应用来说至关重要。无论是在工业领域还是科学研究中,准确测量气体压力是确保系统正常运行的关键因素之一。本文将探讨气体压力传感精度的重要性以及
    的头像 发表于 11-21 15:49 1382次阅读