一
ADC基础概要
1. 什么是ADC
我们通常所说的A/D 转换器芯片(ADC)和 D/A 转换器芯片(DAC)都是模数转换芯片,它们本质上是信号链芯片中的一种。
ADC(Analog to digital converter)用于将真实世界产生的模拟信号(如温度、压力、声音、指纹或者图像等)转换成更容易处理的数字形式;DAC(Digital to analog converter) 的作用恰恰相反,它将数字信号调制成模拟信号。ADC和DAC是真实世界与数字世界的桥梁,属于模拟芯片中难度最高的一部分,因此被称为模拟电路皇冠上的明珠。
在转换器芯片中, ADC应用最为广泛, 在两者的总需求中占比接近80%。因此,本文将重点介绍ADC芯片、ADC市场规模以及其细分市场的投资机会。
2. 信号链中ADC的位置
图1:信号链中ADC的位置
信号链ADC的位置在哪?从模拟信号转成数字信号时,需要首先将声、光、温度等外部的物理条件因素,通过传感器接受这方面的信号,经过后面的放大器以及信号条理芯片的处理,使模拟信号变得更加稳定,然后通过数模转换器ADC将模拟信号转换成数字信号再进行处理。
ADC有一些重要参数,当我们对比谁家的ADC优劣的时候可以用这些参数进行对比一目了然。采样率、精度、信噪比、通道间串扰、工作温度、增益温漂系数等,简单来说,电路速度越高,分辨率越高,功耗越低,高信噪比、低失真、高可靠性,这是好的ADC。
那么ADC有哪些应用领域呢?只要涉及到模拟信号转为数字信号的时候都是需要的,可以用于处理语音、音乐、视频、5G射频信号、激光雷达、示波器、精密仪器、信号发生器场景。它所涵盖的应用领域非常广,横跨通信、消费、工业、汽车四大领域。
3. ADC vs. 数字IC
我们把模拟IC和数字IC进行一下对比。
**从信号传输形式来看,**模拟IC的信号传输形式以波的形式,当我们把模拟信号拿过来看的时候类似于三角函数的形态,和数字IC完全不一样。因为模拟IC接受外部的信号,所以失真程度较高,要通过一定的补偿算法和采样使它达到较为完整的波。数字IC很简单,不会有失真的问题。
从替代性方面来看, 模拟IC的生命周期远长过数字IC,所以替代性比较低一些,包括我们可以看到做模拟IC的设计人才,年龄比做数字IC的人偏大一些,因为他们对EDA软件依赖性没有那么高,更多是依赖于自己的经验。
从零售价格来比较, 模拟IC的价格比较低,但去年上半年因为芯片缺货,包括欧美大厂产能不足的原因,导致零售价格非常高,比海外的售价高出三到四倍的水平,该情况从去年下半年开始逐渐缓解。
一个好的ADC团队,他们相对数字IC不需要太多的投入,模拟IC主流使用0.18um/0.13um, 除了个别使用28nm甚至16nm FinFET。整体来看,ADC相对数字IC流片比较小。
从团队配置来看 ,数字IC往往需要大量人员储备,我们可以理解做数字芯片的公司要不断地烧钱和堆人,而模拟芯片对人才的经验、学识要求更高,成员年龄较数字IC团队偏大,往往团队较小较精英化,其中以ADC为最。国内团队用在民用上的ADC比较缺乏经验,如果要打民用市场需要从海外大厂回来的人员,包括TI、ADI等,这些人更懂客户需求,设计能力更高。
从流片情况来看,国内代工厂缺乏高速高精度ADC流片工艺,产品良率较低,如果主打高速高精度ADC,基本上只能在台积电流片,因此拿晶圆的能力也是这个团队很重要的能力之一。
4. 模数转换过程与ADC
下面,我简单和大家讲一下其中的数模转换的过程。
图2:模拟信号转化为数字信号的过程
从模拟信号到数字信号,模拟信号看起来非常不规则也不完整,最后变成数字信号,经过了采样,通过积分的形式,你的精度越高,相当于积分的DS越小,因此失真性越低,完成之后进行编码,之后转换为数字信号。
图3:采样速率越高,每秒采样次数越多,即失真性越低
从重要性来看,采样是最关键的,在相同的精度下采样速度越高表示芯片越好,转换速度越快。精度越高,分辨率越高,转换出来的信号和原来信号的差距比较小,我们可以理解为失真性比较小。里面存在一个很大的难点,采样速率和采样精度是“鱼和熊掌不可兼得”。如果采样精度做得很高,比如说32比特,没有任何可能做到一个G的采样速率。如果做到一个G的采样速率,精度大概8-14位左右。
二
ADC芯片的常见架构
下面,我跟大家分享一下ADC芯片的常见架构。根据下图所示,速度最高的叫超高速,基本上到10个G,这个细分领域的市场非常小,属于非常冷门的ADC。行业普遍将高速ADC统称pipeline,也叫流水线型ADC。
图4:ADC芯片的分类
流水线型对应的是一个G到12比特左右,往上就是逐次逼进型ADC(SAR ADC),是比较中庸的ADC,属于中精度、中速率。最后是过采样(Σ-ΔADC),基本上是16比特高精度ADC,因此速度相对比较慢一些。
下面我就来分别介绍一下这几类ADC:
1. 过采样ADC(Σ-ΔADC)
图5:Σ-ΔADC(过采样)
如上图所示,过采样ADC结构相比流水线型简单一些,比逐次逼进型稍微复杂一点。它是通过积分的方式和跟踪信号的局部平均值,整体来看工艺要求不是很高。国内的中芯国际可以流片,应用领域很广,包括高精度数据采集,特别是传感器、数字音响系统、多媒体、工业流程控制、地震勘探仪器、声纳等电子测量、语音系统等。我个人喜欢分为消费领域和仪器领域,基本上是这两个最大应用领域。
在消费领域,提质仪和测温枪,比较低端的传感器都会用到过采样ADC,尤其是消费级别,占据了过采样ADC绝大的份额。测量仪器领域,包括地震勘测仪、声纳、CT机、X光机等,这些领域的价格昂贵,但是需要的量不多,所以市场规模相对消费电子小一些。
2. 逐次逼近型ADC(SAR ADC)
图6:SAR ADC(逐次逼近型)
逐次逼进型ADC,特点是采用二分法的形式,采样信号在比较器里不断和参考链进行比较,最后对信号完成模拟形态。优点是结构相对于流水线型来说比较简单,数字化程度比较高,功耗比较低,整体来看主要以SoC形式存在。这款芯片也能在中芯国际流片,应用领域比较广。因为是中等精度、中等速度,所以在工控领域和通信领域都会用到,转换速度和精度比较一般。
3.快闪型ADC(Flash ADC)
图7:Flash ADC(快闪型)
超高速ADC也被称为快闪型ADC,因为性能相对来说比较好,复杂程度高。如果随着精度上升,比较器的个数呈指数级的上升,功耗和面积非常高,所以打不动民用市场,只是在非常偏门的市场应用比较多,这块的市场规模可以忽略不计。
4. 流水线型ADC(Pipeline ADC)
图8:Pipeline ADC(流水线型)
我们再来看一下流水线型ADC。这一款ADC比较复杂,这个名称是国内提出的,因为国内是仿照TI的架构自己做出来的架构。它的结构比较复杂,速度非常高,精度主要是集中在8-12比特,所以特别适合用于高速情况下的信号处理,比如说高速数据采集,视频信号量化以及用在基站里的通讯技术等领域。它的应用场景包括5G基站、雷达、医学成像等,基本上高性能要求的地方都要用到。功耗比较大,电路面积比较大,只能在台积电流片。
从下面的图可以清晰地看到四款ADC从精度、采样速率、功耗的情况。
图9:四款ADC性能对比
我做一个总结,流水线型属于法拉利,单价比较高,很难买到,面积比较大,性能比较好。
逐次逼进型ADC比较中庸,属于日系车的雷克萨斯,应用的场景比较多,单价也会低一些。
过采样ADC相当于马自达,精度比较高,速度很慢,可以下沉消费市场,做得好也非常难,操控性比较强。
超高速ADC只管速度,不管精度,用得很少,在一些专用的特殊场景,比如航空航天或者军工领域,但是基本上买不到国外的,而且市场规模非常窄。
三
ADC行业特点
1. 高端ADC面临“卡脖子”问题
目前,高端ADC面临卡脖子问题,就是我们买不到。我们看下图有一条线,线以上就是瓦森纳协议。
图10:“瓦森纳禁运线”标准
这条线我们可以了解到高性能的,比如12比特作为代表,12比特的精度做到一个G的采样速率水平,这类芯片是买不到的,中国属于受限制的国家,禁运范围主要集中在流水线型和逐次逼进型。因为用在通讯基站以及军工方面,必须要采用流水线型的架构才能做出来,军工客户或者大客户面临的问题是有或无的问题,我宁愿花远高于TI或者ADI的价格,可能高四五倍买芯片,解决从无到有的问题。
因为瓦森纳协议的因素,国内涌进了很多家公司,目前有六七家,专注瓦森纳协议以上的ADC起家,但是他们打不进民用市场。做法拉利和马自达有很大的区别,又想性能好又舒服很考验芯片设计能力,也许能把性能做得很好,但是体验不是特别好,或者把体验做得特别好,但是开起来性能一般,这也是很难平衡把握的因素。
2. ADC行业的三大难点
ADC行业有三个难点, 一是设计难度大 ,很难依赖于ADC的软件进行设计,很多要靠设计人员自己的经验,很多时候有很大的问题,设计出来的芯片静态指标是完美的,但是跑出来的时候动态指标远远达不到静态指标,比如噪声、干扰等,尤其是从研究院或者科研院所出来的团队,需要工程师有多学科基础。这是目前ADC行业最大的痛点。
二是生命周期比较长 ,由于模拟芯片注重高可靠性和稳定性,因此模拟芯片在新场景验证的时间比较长,一旦产品切入客户之后,迭代周期也会比较长,可持续供货长达10年以上,这个客户相当于锁定了,和汽车行业类似。
三是人才设计能力要求高 ,模拟芯片不需要大军团,但对人才设计能力经验要求非常高,年轻的芯片设计师可能学科背景不错,但是也不放心,因为不具备超过10年以上模拟芯片设计的经验,工程师要对集成电路设计、晶圆制造工艺流程和大部分元器件的电特性和物理特性均有了解。未来芯片的动态性能做出来的话,静态性能差距有点大,这是我们必须考量的因素。
-
传感器
+关注
关注
2545文章
50400浏览量
750738 -
放大器
+关注
关注
143文章
13522浏览量
212838 -
模数转换器
+关注
关注
26文章
3082浏览量
126692 -
信号发生器
+关注
关注
28文章
1439浏览量
108591 -
ADC芯片
+关注
关注
3文章
76浏览量
20224
发布评论请先 登录
相关推荐
评论