0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ICCV 2023 | 超越SAM!EntitySeg:更少的数据,更高的分割质量

智能感知与物联网技术研究所 来源:未知 2023-10-02 10:40 次阅读

稠密图像分割问题一直在计算机视觉领域中备受关注。无论是在 Adobe 旗下的 Photoshop 等重要产品中,还是其他实际应用场景中,分割模型的泛化和精度都被赋予了极高的期望。对于这些分割模型来说,需要在不同的图像领域、新的物体类别以及各种图像分辨率和质量下都能够保持鲁棒性。为了解决这个问题,早在 SAM[6] 模型一年之前,一种不考虑类别的实体分割任务 [1] 被提出,作为评估模型泛化能力的一种统一标准。

在本文中,High-Quality Entity Segmentation 对分割问题进行了全新的探索,从以下三个方面取得了显著的改进:

1. 更优的分割质量:正如上图所示,EntitySeg 在数值指标和视觉表现方面都相对于 SAM 有更大的优势。令人惊讶的是,这种优势是基于仅占训练数据量千分之一的数据训练取得的。

2. 更少的高质量数据需求:相较于 SAM 使用的千万级别的训练数据集,EntitySeg 数据集仅含有 33,227 张图像。尽管数据量相差千倍,但 EntitySeg 却取得了可媲美的性能,这要归功于其标注质量,为模型提供了更高质量的数据支持。

3. 更一致的输出细粒度(基于实体标准):从输出的分割图中,我们可以清晰地看到 SAM 输出了不同粒度的结果,包括细节、部分和整体(如瓶子的盖子、商标、瓶身)。然而,由于 SAM 需要对不同部分的人工干预处理,这对于自动化输出分割的应用而言并不理想。相比之下,EntitySeg 的输出在粒度上更加一致,并且能够输出类别标签,对于后续任务更加友好。

在阐述了这项工作对稠密分割技术的新突破后,接下来的内容中介绍 EntitySeg 数据集的特点以及提出的算法 CropFormer。

wKgaomUs_uaAD2aRAACSqit3Alw707.png

论文链接:https://arxiv.org/abs/2211.05776

代码链接:

https://github.com/qqlu/Entity/blob/main/Entityv2/README.md

主页链接:

http://luqi.info/entityv2.github.io/

根据 Marr 计算机视觉教科书中的理论,人类的识别系统是无类别的。即使对于一些不熟悉的实体,我们也能够根据相似性进行识别。因此,不考虑类别的实体分割更贴近人类识别系统,不仅可以作为一种更基础的任务,还可以辅助于带有类别分割任务 [2]、开放词汇分割任务 [3] 甚至图像编辑任务 [4]。与全景分割任务相比,实体分割将“thing”和“stuff”这两个大类进行了统一,更加符合人类最基本的识别方式。

wKgaomUs_uaAaVeYAAAl6LOgh3c146.png  

EntitySeg数据集

由于缺乏现有的实体分割数据,作者在其工作 [1] 使用了现有的 COCO、ADE20K 以及 Cityscapes 全景分割数据集验证了实体任务下模型的泛化能力。然而,这些数据本身是在有类别标签的体系下标注的(先建立一个类别库,在图片中搜寻相关的类别进行定位标注),这种标注过程并不符合实体分割任务的初衷——图像中每一个区域均是有效的,哪怕这些区域无法用言语来形容或者被 Blur 掉,都应该被定位标注。

此外,受限于提出年代的设备,COCO 等数据集的图片域以及图片分辨率也相对单一。因此基于现有数据集下训练出的实体分割模型也并不能很好地体现实体分割任务所带来的泛化能力。最后,原作者团队在提出实体分割任务的概念后进一步贡献了高质量细粒度实体分割数据集 EntitySeg 及其对应方法。EntitySeg 数据集是由 Adobe 公司 19 万美元赞助标注完成,已经开源贡献给学术界使用。

项目主页:

http://luqi.info/entityv2.github.io/数据集有三个重要特性:1. 数据集汇集了来自公开数据集和学术网络的 33,227 张图片。这些图片涵盖了不同的领域,包括风景、室内外场景、卡通画、简笔画、电脑游戏和遥感场景等。2. 标注过程在无类别限制下进行的掩膜标注,并且可以覆盖整幅图像。3. 图片分辨率更高,标注更精细。如上图所示,即使相比 COCO 和 ADE20K 数据集的原始低分辨率图片及其标注,EntitySeg 的实体标注更全且更精细。最后,为了让 EntitySeg 数据集更好地服务于学术界,11580 张图片在标注实体掩膜之后,以开放标签的形式共标注了 643 个类别。EntitySeg、COCO 以及 ADE20K 数据集的统计特性对比如下:wKgaomUs_uaADlXLAAEABS33bTg176.png通过和 COCO 以及 ADE20K 的数据对比,可以看出 EntitySeg 数据集图片分辨率更高(平均图片尺寸 2700)、实体数量更多(每张图平均 18.1 个实体)、掩膜标注更为复杂(实体平均复杂度 0.719)。极限情况下,EntitySeg 的图片尺寸可达到 10000 以上。与 SAM 数据集不同,EntitySeg 更加强调小而精,试图做到对图片中的每个实体得到最为精细的边缘标注。此外,EntitySeg 保留了图片和对应标注的原始尺寸,更有利于高分辨率分割模型的学术探索。基于 EntitySeg 数据集,作者衡量了现有分割模型在不同分割任务(无类别实体分割,语义分割,实例分割以及全景分割)的性能以及和 SAM 在 zero-shot 实体级别的分割能力。

wKgaomUs_uaARWVxAAEMAsNKrjY791.png

wKgaomUs_uaAU8AmAACkTHk6Ig4993.png

wKgaomUs_ueAGTK_AAAuhh9-KLM590.png  

CropFormer算法框架

除此之外,高分辨率图片和精细化掩膜给分割任务带来了新的挑战。为了节省硬件内存需求,分割模型需要压缩高分辨率图片及标注进行训练和测试进而导致分割质量的降低。为了解决这一问题,作者提出了 CropFormer 框架来解决高分辨率图片分割问题。CropFormer 受到 Video-Mask2Former [5] 的启发, 利用一组 query 连结压缩为低分辨率的全图和保持高分辨率的裁剪图的相同实体。因此,CropFormer 可以同时保证图片全局和区域细节属性。CropFormer 是根据 EntitySeg 高质量数据集的特点提出的针对高分辨率图像的实例/实体分割任务的 baseline 方法,更加迎合当前时代图片质量的需求。wKgaomUs_ueAKPi7AAH2IXUrEjs806.png

最后在补充材料中,作者展示了更多的 EntitySeg 数据集以及 CropFormer 的可视化结果。下图为更多数据标注展示:

下图为 CropFormer 模型测试结果:

参考文献

[1] Open-World Entity Segmentation. TAPMI 2022.[2] CA-SSL: Class-agnostic Semi-Supervised Learning for Detection and Segmentation. ECCV 2022.[3] Open-Vocabulary Panoptic Segmentation with MaskCLIP. ICML 2023.[4] SceneComposer: Any-Level Semantic Image Synthesis. CVPR 2023.[5] Masked-attention Mask Transformer for Universal Image Segmentation. CVPR 2022.

[6] Segment Anything. ICCV 2023.


原文标题:ICCV 2023 | 超越SAM!EntitySeg:更少的数据,更高的分割质量

文章出处:【微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 物联网
    +关注

    关注

    2903

    文章

    44280

    浏览量

    371303

原文标题:ICCV 2023 | 超越SAM!EntitySeg:更少的数据,更高的分割质量

文章出处:【微信号:tyutcsplab,微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    画面分割器怎么调试

    画面分割器,通常指的是视频画面分割器,它是一种可以将一个视频信号分割成多个小画面的设备。这种设备广泛应用于监控系统、视频会议、多画面显示等场景。调试画面分割器是一个技术性很强的工作,需
    的头像 发表于 10-17 09:32 281次阅读

    画面分割器怎么连接

    器的基本原理 画面分割器的工作原理是通过数字信号处理技术,将多个视频信号源(如摄像头、DVR等)的图像数据进行处理,然后在一个监视器上以分割的形式显示出来。这些分割可以是1画面、4画面
    的头像 发表于 10-17 09:29 223次阅读

    使用更少的输入来监控误差信号

    电子发烧友网站提供《使用更少的输入来监控误差信号.pdf》资料免费下载
    发表于 09-20 09:04 0次下载
    使用<b class='flag-5'>更少</b>的输入来监控误差信号

    图像语义分割的实用性是什么

    图像语义分割是一种重要的计算机视觉任务,它旨在将图像中的每个像素分配到相应的语义类别中。这项技术在许多领域都有广泛的应用,如自动驾驶、医学图像分析、机器人导航等。 一、图像语义分割的基本原理 1.1
    的头像 发表于 07-17 09:56 358次阅读

    图像分割和语义分割的区别与联系

    图像分割和语义分割是计算机视觉领域中两个重要的概念,它们在图像处理和分析中发挥着关键作用。 1. 图像分割简介 图像分割是将图像划分为多个区域或对象的过程。这些区域或对象具有相似的属性
    的头像 发表于 07-17 09:55 697次阅读

    机器学习中的数据分割方法

    在机器学习中,数据分割是一项至关重要的任务,它直接影响到模型的训练效果、泛化能力以及最终的性能评估。本文将从多个方面详细探讨机器学习中数据分割的方法,包括常见的
    的头像 发表于 07-10 16:10 1330次阅读

    图像分割与语义分割中的CNN模型综述

    图像分割与语义分割是计算机视觉领域的重要任务,旨在将图像划分为多个具有特定语义含义的区域或对象。卷积神经网络(CNN)作为深度学习的一种核心模型,在图像分割与语义分割中发挥着至关重要的
    的头像 发表于 07-09 11:51 685次阅读

    天马荣获海微科技颁发“2023年度优秀质量奖”和“2023年度保供奖”

    近日,天马荣获海微科技颁发的“2023年度优秀质量奖”和“2023年度保供奖”,颁奖仪式在深圳天马产业基地研发楼举行。颁奖嘉宾由海微科技供应商质量负责人张浩武担任,出席颁奖仪式的嘉宾有
    的头像 发表于 06-17 16:16 649次阅读

    天马微电子荣获小米“2023年度质量奖”

    近日,天马荣获小米“2023年度质量奖”,颁奖仪式在武汉天马OLED基地举行。
    的头像 发表于 03-08 16:42 978次阅读

    一种新的分割模型Stable-SAM

    SAM、HQ-SAM、Stable-SAM在提供次优提示时的性能比较,Stable-SAM明显优于其他算法。这里也推荐工坊推出的新课程《如何将深度学习模型部署到实际工程中?
    的头像 发表于 12-29 14:35 625次阅读
    一种新的<b class='flag-5'>分割</b>模型Stable-<b class='flag-5'>SAM</b>

    【爱芯派 Pro 开发板试用体验】+ 图像分割和填充的Demo测试

    框架SAM 这个例子使用了Meta AI发布的图像识别和分割框架SAM(Segment Anything,分割一切对象模型)。自SA项目自2023
    发表于 12-26 11:22

    华秋DFM荣获2023年度电子信息行业可靠性质量提升典型案例

    在11月25日由中国电子信息行业联合会与盐城市人民政府联合主办的“2023中国电子信息行业发展大会”上, 华秋DFM软件凭借其卓越的技术实力帮助电子制造产业质量提升,荣获了2023年度电子信息行业
    发表于 12-08 10:09

    华秋DFM软件荣获2023年度电子信息行业可靠性质量提升典型案例

    在11月25日由中国电子信息行业联合会与盐城市人民政府联合主办的“2023中国电子信息行业发展大会”上, 华秋DFM软件凭借其卓越的技术实力帮助电子制造产业质量提升,荣获了2023年度电子信息行业
    发表于 12-08 10:06

    卓越领航!广和通获评“2023质量发展领军企业”

    广和通要闻 11月28日,以“协同新发展、引领新示范”为主题的第四届高质量发展高峰论坛暨2023质量发展领军企业、领军人物颁奖盛典顺利举办。大会揭晓了“2023
    的头像 发表于 11-29 18:00 489次阅读
    卓越领航!广和通获评“<b class='flag-5'>2023</b>高<b class='flag-5'>质量</b>发展领军企业”

    OpenHarmony亮相MTSC 2023 | 质量&amp;效率共进,赋能应用生态发展

    11 月 25 日,MTSC 2023 第十二届中国互联网测试开发大会在深圳登喜路国际大酒店圆满举行。大会以“软件质量保障体系和测试研发技术交流”为主要目的,旨在为行业搭建一个深入探讨和交流的桥梁
    发表于 11-28 15:41