数据中心在日益数字化、互联化和虚拟化的世界中发挥着关键和重要的作用。由于数据中心有巨大的能源需求,因此需要能够减少电力损失、提高效率和加强热控制的电源解决方案。
近年来,由于用户数量增多,移动设备和社交网络的广泛使用,以及信息在云端的远程存储,互联网的流量有了很大的增长。据分析人士称,这种流量的增长仍未达到完全饱和。
这些增长预测提出了有关设备效率和电力消耗的问题,这刺激了新的节能电力转换技术的发展,如宽带隙 (WBG) 功率器件所提供的技术。
效率最重要
除了物理基础设施外,数据中心是一个容纳联网的计算机服务器的结构,用于电子处理、存储和数据分发。数据中心的关键组成部分是服务器,这是一个存储数据的设备,为互联网、云计算和企业内部网提供动力。
由于创建、处理和存储的数字数据量不断增加,能源需求也不断上升。除了为机架、数据存储和网络单元供电外,数据中心还需要辅助的冷却和通风设备,以消除数据处理和电力转换过程中产生的热量。
数据中心使用的电源转换系统的典型结构包括多个 AC/DC、DC/AC 和 DC/DC电压转换器,整个数据中心的效率完全取决于这些转换器。降低为数据处理和存储设备供电的转换器中的损耗有两大关键优势。首先,不需要供应不被转化为热能的能量;其次,处理废热所需的能量也减少了。
数据中心的效率通常用电力使用效率 (PUE) 指标来衡量。PUE 由绿色电网组织开发,是比较数据中心能源使用的标准方法,定义为数据中心整体能源使用与信息技术 (IT) 设备能源使用之比。

PUE值高原因可能不尽相同,比如以下原因:
-
存在“僵尸”(或“昏迷”)服务器和不间断电源 (UPS),意味着设备已经打开,但没有得到充分利用。它包括无意中闲置的设备,这些设备在没有可见性或外部通信的情况下消耗电力。
-
低效的备份和冷却策略
-
数据中心更注重可靠性而非效率
WBG半导体在数据中心的优势
尽管硅 (Si) 是最知名的技术,但其带隙比像氮化镓 (GaN) 和碳化硅 (SiC) 这样的宽带隙 (WBG) 材料要小,这降低了其工作温度,限制了其在较低电压下的使用,并降低了其导热率。
采用更有效的功率器件,如用 WBG 半导体代替硅,就是一个更有效的选择。像 GaN 和 SiC 这样的 WBG 半导体可以克服硅技术的限制,提供高击穿电压、高开关频率,降低传导和开关损耗,从而实现更好的散热和更小的外形尺寸(见图 1)。这使得电源和电源转换阶段的效率更高。如上所述,在数据中心中,即使效率提高一个百分点,也可以转化为大量的能源节约。
GaN
GaN(氮化镓)是一类新兴的宽带隙材料,其电子带隙比硅 (1.1 eV) 大三倍 (3.4 eV)。此外,与硅相比,GaN 具有两倍的电子迁移率。GaN 在非常高的开关频率下具有众所周知和无与伦比的效率,这是因其巨大的电子迁移率所决定的。这些特性能够让基于氮化镓的功率器件在更小的芯片尺寸内承受更强的电场。更小的晶体管和更短的电流路径带来了超低的电阻和电容,并使开关速度提高 100 倍。
减少了电阻和电容也提高了电源转换效率,为数据中心的工作负载提供更多的电力。与其产生更多的热量,从而需要为数据中心提供更多的冷却,不如在每瓦特上完成更多的数据中心操作。高开关频率也减少了储能无源元件的尺寸和重量,因为每个开关周期储存的能量大大减少。GaN 的另一个优势是它能够支持不同的电源转换器和电源拓扑结构。
GaN与数据中心应用相关的主要特性如下:
-
支持硬和软开关拓扑结构
-
快速开启和关闭(GaN 开关波形与理想方波几乎相同)
-
零反向恢复电荷
-
与硅技术相比:
-
击穿电场提升了 10 倍
-
迁移率提高了 2 倍
-
输出电荷降低了 10 倍
-
栅极电荷和线性 Coss(输出电容)特性降低了10 倍
-
高效率、高功率密度和高开关频率
-
减少外形尺寸和导通电阻
-
重量轻
-
近乎无损的开关操作。
SiC
历史上,SiC功率器件在数据中心的最早应用之一是 UPS 设备。UPS 对数据中心来说是必不可少的,以防止市电故障或中断对其运营产生潜在的灾难性影响。电源冗余对于确保数据中心的运行连续性和可靠性至关重要。优化数据中心的电力使用效率 (PUE) 是每个企业家和运营管理层的首要任务。一个可靠的、持续的电源对数据中心来说是必要的。为满足这一要求,经常采用与电压和频率无关的 (VFI) UPS 系统。一个 AC/DC 转换器(整流器)、一个 DC/AC 转换器(逆变器)和一个 DC Link 组成了一台 VFI UPS 设备。旁通开关主要在维护期间使用,将 UPS 输出直接连接到输入端的交流电源上。在市电发生故障的情况下,通常由许多电池组成的电池组连接到降压或升压转换器,为电源供电。
由于输入端的交流电压被转换为直接电压,然后再次转换为精确的正弦输出电压,这些设备通常是双转换电路。其结果是消除了任何供电电压的变化,让 UPS 能够向负载提供稳定和干净的信号。除了将系统与电源隔离外,电压转换过程还使负载免受电压波动的影响。
直到最近,具有三层开关拓扑结构的绝缘栅双极晶体管 (IGBT) 才实现了最佳的效率结果。由于这种方法达到了96% 的效率水平,与早期基于变压器的模型相比,这是一个重大的改进。
碳化硅晶体管使得在双转换 UPS 系统中的功率损失大大减少 (>70%),并使得效率提升成为可能。这种超凡的效率(超过 98%)在低负荷和重负荷的情况下都会持续保持。
由于碳化硅的固有特性,这种类型的结果是可以获得的。与传统的硅基器件(如 MOSFET 和 IGBT)相比,SiC可以在更高的温度、频率和电压下工作。
基于 SiC 的不间断电源的另一个优势是具有更好的热损值(或排热),并使之能够在更高的温度下运行。这一特性能够让设计者采用更加紧凑和经济的冷却解决方案。总的来说,基于 SiC 的 UPS 比采用硅基元件的同等型号更高效、更轻、更小。
基于 SiC 的半导体由于其固有的特性,相比传统硅半导体可以在更高的温度下工作。由于 UPS的热损耗较低,并能在较高温度下运行,因此客户的冷却成本可以降低。
当需要最大限度地利用数据中心的可用空间时,与传统的硅基 UPS 相比,基于 SiC 的 UPS减少了重量和尺寸。此外,基于 SiC 的 UPS 需要的地面空间更少,这也增加了特定区域内的可用电力容量。
结语
总之,像 GaN 和 SiC 这样的 WBG 材料,是新兴的半导体,将为数据中心等高要求应用开辟一个新的电力电子发展航道。其优势全面,包括提高系统效率,降低冷却系统要求,在更高温度下运行,以及更高的功率密度。随着 GaN 和 SiC 功率器件集成到电压转换器和电源中,能帮助数据中心运营商实现了更高的效率,最大限度地利用地面空间并降低整个设施的运营成本。
小编的话
正如文章所言,在数据中心中,即使效率提高一个百分点,也可以转化为大量的能源节约。考虑到数据中心规模不断增长的趋势,对于数据中心的运营者而言,如何减轻能耗焦虑,一直是一个重要的课题。从Si转向WBG已经成为一个成熟的选择,而GaN和 SiC无疑将扮演重要的角色。您是否正在利用WBG进行电源系统的设计和应用?您在Si转向WBG功率器件的过程中有哪些心得和经验?欢迎留言,交流分享!
秘技知识学不停 专属福利享不停
就等您加入!
点此登记
赚积分、换好礼
立即到「会员权益」查看您的礼遇! 如有任何问题,欢迎联系得捷电子DigiKey的客服团队中国(人民币)客服




中国(美金)/ 香港客服

400-882-4440



点击下方“阅读原文”查看更多
让我知道你在看哟
原文标题:为什么说这两种宽带隙半导体将成为数据中心电源系统的新宠?
文章出处:【微信公众号:得捷电子DigiKey】欢迎添加关注!文章转载请注明出处。
-
得捷电子
+关注
关注
1文章
255浏览量
9268 -
宽带隙半导体
+关注
关注
0文章
34浏览量
85
原文标题:为什么说这两种宽带隙半导体将成为数据中心电源系统的新宠?
文章出处:【微信号:得捷电子DigiKey,微信公众号:得捷电子DigiKey】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
BBU电芯:数据中心应急电源新宠,锂电产业新增长点
效率高达99.4%!AI推动数据中心电源创新

纳微半导体发布全球首款8.5kW AI数据中心服务器电源
浅析如何降低数据中心电力能耗


半导体存储器在数据中心中的应用
晶闸管的阻断状态有两种是什么
Nexperia斥资2亿美元加速汉堡工厂宽带隙(WBG)半导体研发与生产

长工微IS6102A 15A E-Fuse:数据中心电源安全的守护者
【解决方案】机房能源末端 数据中心 精密配电管理系统

Rapidus携手Esperanto研发低功耗数据中心AI半导体
管理数据中心电缆的技巧
纳微半导体发布最新AI数据中心电源技术路线图
纳微半导体发布最新AI数据中心电源技术路线图

评论