0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅SiC器件到底有多强

jf_52490301 来源:jf_52490301 作者:jf_52490301 2023-10-08 16:10 次阅读

与目前广泛使用的Si材料相比,KeepTops的碳化硅材料具有更高的导热性,这决定了其高电流密度特性;其更高的带隙宽度决定了SiC器件的高击穿场强和高工作温度。其优点可归纳为以下几点:
1、高温工作
碳化硅在物理性能方面具有高度稳定的晶体结构,其能带宽度可达2.2eV~3.3eV,几乎是Si材料的两倍。因此,SiC可以承受更高的温度。一般来说,SiC器件所能达到的工作温度可达600℃。
2、高阻断电压
SiC器件的击穿场强是Si器件的十几倍,因此SiC器件的阻断电压远高于Si器件。
3、低损耗
一般来说,半导体器件的导通损耗与其击穿场强成反比。因此,在相似的功率水平下,SiC器件的传导损耗比Si器件小得多。而且,SiC器件的导通损耗对温度的依赖性很小,SiC器件的导通损耗随温度的变化很小,这也与传统的Si器件有很大的不同。
4、开关速度快
SiC的热导率几乎是Si材料的2.5倍,饱和电子漂移速率是Si的2倍,因此SiC器件可以工作在更高的频率。

wKgZomUiY9SAdtzDAAMIq14OsOg673.png

基于以上优点,在相同的功率水平下,可以大大减少设备中的功率器件数量、散热器的体积、以及滤波元件的体积,同时效率也大大提高。
在SiC MOSFET的开发和应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET显著降低了导通电阻和开关损耗,适用于更高的工作频率。此外,由于其高温运行特性,高温稳定性大大提高。性生活。各种功率器件在1200V功率水平下的特性比较结果。参与比较的SiC MOSFET为GE12N15L。应当指出的是,这些功率器件都在TO-247封装,和IPW90R120C3的耐压只有900V,但它已经是在类似的功率水平,可以找到更好的特性的硅MOSFET。

器件的结构和特点
Si材料中的电压电阻器件越高,每单位面积的导通电阻越大(以电压电阻值的大约2至2.5次方的比率增加)。因此,IGBT(绝缘栅双极型)主要用于600V以上电压的晶体管
IGBT通过电导调制,在漂移层中注入空穴作为少数载流子,使其导通电阻比MOSFET小。然而,由于少数载流子的积累,在关断过程中会产生尾电流。这会导致巨大的开关损耗。
SiC器件漂移层的阻抗比Si器件低,MOSFET可以实现高耐压和低阻抗,无需电导调制。
而且,MOSFET原则上不产生尾电流,因此当用SiC—MOSFET替代IGBT时,开关损耗可以显著降低,散热元件也可以小型化。
此外,SiC—MOSFET可以在IGBT不能工作的高频条件下驱动,从而现无源器件的小型化。
与600V~900V Si—MOSFET相比,SiC—MOSFET的优点是芯片面积小(可以实现小封装),二极管的恢复损耗很小。
主要用于工业机器电源逆变器转换器和高效率功率调节器。

SiC的绝缘击穿场强是Si的10倍,因此可以在低阻抗、薄漂移层的情况下获得高耐压。
因此,在相同耐压值下,SiC可以获得较低的标准化导通电阻(单位面积导通电阻)。
例如,在900V时,SiC—MOSFET的芯片尺寸只需要Si—MOSFET的1/35和SJ—MOSFET 1/10就能达到相同的导通电阻。
不仅可以在一个小封装中实现低通阻,而且还可以降低栅电荷QG和结电容
SJ-MOSFET只有900V的产品,但是SiC可以很容易地达到1700V以上的耐压,并且导通电阻非常低。
因此,不需要使用双极器件结构,例如IGBT(导通电阻变低,开关速度变慢),可实现具有低导通电阻、高耐压、快速开关等优点的器件。

wKgaomUiY-2AUh2BAAIt-MMR7xo076.png

VD-ID特性
与IGBT不同的是,SiC—MOSFET没有开通电压,因此可以在从小电流到大电流的较宽电流范围内实现低导通损耗。
硅MOSFET的导通电阻在150°C的室温下上升到2倍以上。与Si—MOSFET不同的是,SiC—MOSFET的上升速率相对较低,因此易于热设计,高温下的导通电阻也较低。非常低。
与IGBT不同的是,SiC—MOSFET没有开通电压,因此可以在从小电流到大电流的较宽电流范围内实现低导通损耗。
硅MOSFET的导通电阻在150°C的室温下上升到2倍以上。与Si—MOSFET不同的是,SiC—MOSFET的上升速率相对较低,因此易于热设计,高温下的导通电阻也较低。非常低。

驱动栅极电压和导通电阻。
SiC—MOSFET的漂移层电阻比Si—MOSFET低,但另一方面,根据目前的技术水平,SiC—MOSFET的MOS沟道部分的迁移率相对较低,因此沟道部分的阻抗比Si器件高。
因此,栅极电压越高,可以获得越低的导通电阻(VCS=20V及以上会逐渐饱和)。
如果采用普通IGBT和Si-MOSFET的驱动电压VGS=10~15V,SiC原有的低导通电阻特性就不能发挥出来。因此,为了获得足够低的导通电阻,建议使用VGS=18V驱动。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    146

    文章

    7151

    浏览量

    213109
  • IGBT
    +关注

    关注

    1266

    文章

    3788

    浏览量

    248841
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2800

    浏览量

    62597
  • 碳化硅
    +关注

    关注

    25

    文章

    2744

    浏览量

    49008
收藏 人收藏

    评论

    相关推荐

    碳化硅SiC在光电器件中的使用

    。 高热导率 :SiC的热导率是Si的三倍以上,有助于器件的散热。 高电子饱和速度 :SiC的电子饱和速度高于Si,适合于高速电子器件。 化学稳定性 :
    的头像 发表于 11-25 18:10 446次阅读

    碳化硅SiC在电子器件中的应用

    随着科技的不断进步,电子器件的性能要求也日益提高。传统的硅(Si)材料在某些应用中已经接近其物理极限,尤其是在高温、高压和高频领域。碳化硅SiC)作为一种宽带隙(WBG)半导体材料,因其卓越的电学
    的头像 发表于 11-25 16:30 506次阅读

    碳化硅SiC材料应用 碳化硅SiC的优势与性能

    碳化硅SiC材料应用 1. 半导体领域 碳化硅是制造高性能半导体器件的理想材料,尤其是在高频、高温、高压和高功率的应用中。SiC基半导体
    的头像 发表于 11-25 16:28 454次阅读

    碳化硅功率器件的工作原理和应用

    碳化硅SiC)功率器件近年来在电力电子领域取得了显著的关注和发展。相比传统的硅(Si)基功率器件碳化硅具有许多独特的优点,使其在高效能、
    的头像 发表于 09-13 11:00 531次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的工作原理和应用

    碳化硅功率器件的优势和应用领域

    在电力电子领域,碳化硅SiC)功率器件正以其独特的性能和优势,逐步成为行业的新宠。碳化硅作为一种宽禁带半导体材料,具有高击穿电场、高热导率、低介电常数等特点,使得
    的头像 发表于 09-13 10:56 648次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的优势和应用领域

    碳化硅功率器件的原理简述

    随着科技的飞速发展,电力电子领域也迎来了前所未有的变革。在这场变革中,碳化硅SiC)功率器件凭借其独特的性能优势,逐渐成为业界关注的焦点。本文将深入探讨碳化硅功率
    的头像 发表于 09-11 10:47 487次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的原理简述

    碳化硅功率器件的优点和应用

    碳化硅(SiliconCarbide,简称SiC)功率器件是近年来电力电子领域的一项革命性技术。与传统的硅基功率器件相比,碳化硅功率
    的头像 发表于 09-11 10:44 490次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的优点和应用

    碳化硅功率器件有哪些优势

    碳化硅SiC)功率器件是一种基于碳化硅半导体材料的电力电子器件,近年来在功率电子领域迅速崭露头角。与传统的硅(Si)功率
    的头像 发表于 09-11 10:25 522次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>有哪些优势

    碳化硅功率器件的优势和分类

    碳化硅SiC)功率器件是利用碳化硅材料制造的半导体器件,主要用于高频、高温、高压和高功率的电子应用。相比传统的硅(Si)基功率
    的头像 发表于 08-07 16:22 537次阅读
    <b class='flag-5'>碳化硅</b>功率<b class='flag-5'>器件</b>的优势和分类

    碳化硅(SiC)功率器件的开关性能比较

    过去十年,碳化硅(SiC)功率器件因其在功率转换器中的高功率密度和高效率而备受关注。制造商们已经开始采用碳化硅技术来开发基于各种半导体器件
    的头像 发表于 05-30 11:23 712次阅读
    <b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)功率<b class='flag-5'>器件</b>的开关性能比较

    碳化硅器件的基本特性都有哪些?

    碳化硅(SiliconCarbide,SiC器件作为第三代半导体材料的重要代表,近年来在电子器件领域中备受关注。
    的头像 发表于 05-27 18:04 1348次阅读

    SIC 碳化硅认识

    1:什么是碳化硅 碳化硅SiC)又叫金刚砂,它是用石英砂、石油焦、木屑、食盐等原料通过电阻炉高温冶炼而成,其实碳化硅很久以前就被发现了,它的特点是:化学性能稳定、导热系数高、热膨胀系
    的头像 发表于 04-01 10:09 1005次阅读
    <b class='flag-5'>SIC</b> <b class='flag-5'>碳化硅</b>认识

    碳化硅功率器件的基本原理、性能优势、应用领域

    碳化硅功率器件主要包括碳化硅二极管(SiC Diode)、碳化硅晶体管(SiC Transist
    发表于 02-29 14:23 1631次阅读

    碳化硅功率器件简介、优势和应用

    碳化硅SiC)是一种优良的宽禁带半导体材料,具有高击穿电场、高热导率、低介电常数等特点,因此在高温、高频、大功率应用领域具有显著优势。碳化硅功率器件是利用
    的头像 发表于 01-09 09:26 2829次阅读