0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MCU 面临 800V 电动汽车牵引逆变器的 3 种挑战

深圳市浮思特科技有限公司 2023-10-18 11:54 次阅读

电动汽车 (EV) 牵引逆变器是电动汽车的核心。它将高压电池的直流电转换为多相(通常是三相)交流电来驱动牵引电机并控制制动能量的再生。电动汽车电子设备正在从 400V 架构转向 800V 架构,这正在逐步现实、普及,更高的电压会带来至少三个好处:

- 快速充电 - 在相同电流下提供双倍的电量。

- 通过使用碳化硅 (SiC) 提高效率和功率密度。

- 通过使用更细的电缆来减轻重量,从而减少 800V 相同额定功率所需的电流。

在牵引逆变器中,微控制器MCU)是系统的大脑,通过模数转换器ADC)执行电机控制、电压和电流采样,使用磁芯计算磁场定向控制(FOC)算法,使用脉宽调制 (PWM) 信号驱动功率场效应晶体管 (FET)。对于 MCU 而言,向 800V 牵引逆变器的转变带来了三个挑战

- 需要较低延迟的实时控制性能。

- 增加了功能安全要求。

- 需要对系统故障进行快速响应。

实时控制,低延迟

为了控制牵引电机的扭矩和速度,MCU 使用外设(ADC、PWM)和计算核心的组合来完成控制环路。随着转向 800V 系统,牵引逆变器也正在转向宽带隙半导体(例如 SiC),因为它们在 800V 下的效率和功率密度大大提高。

为了实现 SiC 所需的更高开关频率,该控制环路延迟成为优先考虑的事项。低延迟控制环路还允许工程师以更高的速度运行电机,从而减小电机的尺寸和重量。要了解并减少控制环路延迟,您必须了解控制环路信号链及其各个阶段。

1671691684256688.jpg

为了实现出色的实时控制性能,必须优化整个信号链,包括硬件和软件。从ADC采样(电机输入)到写入PWM(输出控制电机)所需的时间是实时控制性能的基本衡量标准。从ADC采样开始,逆变器系统需要准确、快速地采样,即实现高采样率、至少12位分辨率和低转换时间。

一旦采样可用,就需要通过互连传输到处理器并由处理器读取,并使用优化的总线和内存访问架构来减少延迟。在处理器中,核心需要使用FOC算法根据电机的相电流、速度和位置来计算下一个PWM步骤。

为了进一步减少计算时间,内核需要高时钟速率并且必须有效地执行特定数量的指令。此外,内核需要执行一系列指令类型,包括浮点、三角和整数数学指令。最后,内核再次使用低延迟路径将更新的占空比写入 PWM 生成器。对 PWM 输出应用死区补偿可防止在高侧和低侧 FET 之间切换时发生短路,并且最好在硬件级别应用,以减少软件开销。

提高功能安全要求

由于牵引逆变器提供控制电机的电力,因此它们本质上是功能安全且关键的系统。由于 800V 系统有可能提供更高的功率、扭矩、速度(或全部三项),因此牵引系统需要具有功能安全性,以满足汽车安全完整性等级 (ASIL) D 要求。功能安全系统的关键部分是 MCU,因为它需要做出智能决策以安全地响应系统故障。因此,使用经过 ASIL D 认证的 MCU 是一个重要的安全要素。

为了让工程师更轻松地满足牵引逆变器特定的系统安全要求,TI MCU 提供了附加功能。例如,相电流反馈指示有关电机扭矩的信息,这使得这些信号对安全至关重要。因此,许多工程师更喜欢对相电流进行冗余采样,这意味着 MCU 必须具有多个独立的 ADC。

对系统故障的快速响应

工程师面临的另一个挑战是在发生故障(例如电流更新)时能否快速将电机置于安全状态。在器件中,故障公共输入(过流、过压或高速故障)会发送至创新的可编程实时单元 (PRU)。

PRU 中执行的固件正确评估和响应故障类型并执行所需的 PWM 保护序列,然后根据需要将 PWM 直接置于安全状态。这些操作只需 105 纳秒即可完成。此外,由于固件是用户可编程的,工程师可以根据需要添加额外的自定义逻辑以满足其应用要求。

1671691678271219.jpg

随着越来越多的电动汽车生产,设计趋势将转向SiC和800V技术,需要提高电机控制性能并满足牵引逆变器的功能安全要求。随着世界走向电气化,性能和效率的创新对于帮助汽车工程师设计下一代电动汽车至关重要。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12110

    浏览量

    231528
  • mcu
    mcu
    +关注

    关注

    146

    文章

    17172

    浏览量

    351581
  • 逆变器
    +关注

    关注

    285

    文章

    4729

    浏览量

    207075
收藏 人收藏

    评论

    相关推荐

    Vicor NBM9280电源模块为400V辅助负载供电

    随着 800V 牵引电池在电动汽车中变得日益普及,新的 800V 架构无法兼容原本直接由 400V 电池供电的负载。开发
    的头像 发表于 12-02 13:47 227次阅读

    解密:400V800V,升压变压器助您解决能源效率难题

    一把神奇的钥匙,为破解能源效率难题提供了有效的途径,在电子领域引起了广泛的关注与深入的研究。 一、能源效率困境与 400V/800V 电压转换需求 随着科技的不断进步,众多新兴产业如电动汽车、大型数据中心以及高端工业制造等迅速崛
    的头像 发表于 11-23 17:41 391次阅读
    解密:400<b class='flag-5'>V</b>变<b class='flag-5'>800V</b>,升压变压器助您解决能源效率难题

    高效能源利用:400V800V,升压变压器引领新能源项目

    的性能优势,在众多新能源项目中发挥着关键引领作用,开启了能源利用的新篇章,也成为了电子发烧友们关注的焦点。 一、新能源项目中的电压挑战与升压需求 随着新能源技术在电动汽车、可再生能源发电及储能系统等领域的广泛应用,传统的 400V
    的头像 发表于 11-19 15:02 368次阅读
    高效能源利用:400<b class='flag-5'>V</b>到<b class='flag-5'>800V</b>,升压变压器引领新能源项目

    将UCC28C56EVM-066高密度40W辅助电源用于800V牵引逆变器

    电子发烧友网站提供《将UCC28C56EVM-066高密度40W辅助电源用于800V牵引逆变器.pdf》资料免费下载
    发表于 11-15 15:29 0次下载
    将UCC28C56EVM-066高密度40W辅助电源用于<b class='flag-5'>800V</b><b class='flag-5'>牵引</b><b class='flag-5'>逆变器</b>

    恩智浦高压栅极驱动器助力电动汽车牵引逆变器应用

    电动汽车开发中,牵引逆变器是最为关键的课题之一。想要在提升逆变器功能和性能的同时,进一步减小电路板面积和降低BOM成本,需要在高压栅极驱动器上做文章。
    的头像 发表于 10-25 14:45 552次阅读

    NXP公司电动汽车牵引逆变器解决方案

    随着电动汽车在能耗方面越来越卷,电动汽车驱动逆变器电动汽车动力系统中的效率越来越重要。逆变器的效率直接影响到车辆的续航里程和电池寿命,同时
    的头像 发表于 10-22 16:21 423次阅读
    NXP公司<b class='flag-5'>电动汽车</b><b class='flag-5'>牵引</b><b class='flag-5'>逆变器</b>解决方案

    800V汽车架构升级背后的技术挑战

    消费者追求快速充电,而且越快越好。为此,OEM(整车制造商)愈发关注800V汽车架构,基础设施提供商也在升级其充电网络以支持该架构。
    的头像 发表于 10-18 11:30 417次阅读

    用于800V牵引逆变器的SiC MOSFET高密度辅助电源

    电子发烧友网站提供《用于800V牵引逆变器的SiC MOSFET高密度辅助电源.pdf》资料免费下载
    发表于 09-12 09:44 2次下载
    用于<b class='flag-5'>800V</b><b class='flag-5'>牵引</b><b class='flag-5'>逆变器</b>的SiC MOSFET高密度辅助电源

    通过800V电池设计可靠的牵引逆变器冗余电源

    电子发烧友网站提供《通过800V电池设计可靠的牵引逆变器冗余电源.pdf》资料免费下载
    发表于 08-28 10:48 0次下载
    通过<b class='flag-5'>800V</b>电池设计可靠的<b class='flag-5'>牵引</b><b class='flag-5'>逆变器</b>冗余电源

    恩智浦和采埃孚合作开发基于SiC的电动汽车牵引逆变器解决方案

    恩智浦半导体宣布与电动汽车领域领先企业采埃孚股份公司(ZF Friedrichshafen AG)合作下一代基于SiC的电动汽车(EV)牵引逆变器解决方案。解决方案采用恩智浦先进的GD
    的头像 发表于 08-27 09:48 1260次阅读

    恩智浦与采埃孚携手推动电动汽车行业创新:SiC牵引逆变器解决方案亮相

    股份公司(ZF Friedrichshafen AG),这两家在汽车和半导体技术领域的领军企业,共同宣布了一项开创性的合作——下一代基于SiC(碳化硅)的电动汽车牵引逆变器解决方案。
    的头像 发表于 06-14 15:14 9w次阅读

    电动汽车牵引变频器应用中,磁传感器TLE5309D能否取代旋转变压器?

    我的客户开发了基于 hybridepack 1200V SiC 板的牵引逆变器。 您有哪些支持需求? 1.在电动汽车牵引变频器应用中,磁传感
    发表于 05-31 08:04

    电动汽车采用800V电压系统的原因解析

    800V 电压平台具有更高的充电速度。电动汽车的充电速度一直以来都是制约其普及的一个重要因素。目前市场上的充电桩大多支持380V电压,而采用800V电压平台可以使得充电功率达到更高的水
    发表于 03-21 14:17 832次阅读
    <b class='flag-5'>电动汽车</b>采用<b class='flag-5'>800V</b>电压系统的原因解析

    目前存在哪些与800V电动汽车动力总成架构有关的设计和测试挑战

    电动汽车 (EV) 普及率的上升激发了市场对优化设计、降低成本和提升车辆运行效率的需求,并为产品测试提出了新的难题。
    的头像 发表于 02-19 11:40 972次阅读
    目前存在哪些与<b class='flag-5'>800V</b><b class='flag-5'>电动汽车</b>动力总成架构有关的设计和测试<b class='flag-5'>挑战</b>

    电动汽车的电池管理系统(BMS)技术解析

    48V 到大约 100V,而对于续航数百公里的电动汽车,电压范围最高可达数百伏。下一代电动汽车和卡车将使用 800V 或更高电压的电池组,
    的头像 发表于 01-11 11:34 2556次阅读
    <b class='flag-5'>电动汽车</b>的电池管理系统(BMS)技术解析