0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

聊一聊Si3N4 DBC和AMB陶瓷基板

功率半导体那些事儿 来源:功率半导体那些事儿 2023-10-22 09:27 次阅读

前言

随着宽禁带半导体的发展,功率半导体器件往更高的功率密度,更高的芯片温度以及更高的可靠性方向发展,相应地也对于功率半导体模块封装的提出了更高的要求。包括我们前面聊到的无焊料,无键合线等互连技术趋势外,绝缘基板的选择也成为经常讨论的话题

为了提高模块的散热性能,必须在芯片和底板之间放置一块具有高导热率的绝缘基板,在绝缘基板上构建电路互连的主要方法是DBC(直接键合铜),其中一个陶瓷绝缘层--具有非常好的电绝缘和电介质强度,直接粘合在两层铜之间。这些基板通常根据应用情况和其热性能、机械性能和电绝缘性能来进行选择。

早之前我们也有简单聊过绝缘基板

功率模块Ⅰ—— 绝缘衬底和功率模块Ⅱ —— 绝缘衬底金属化

常见的绝缘基板材料有氧化铝(Al2O3以及掺杂9%氧化锆的HPS)、氮化铝(AlN)、氮化硅(Si3N4)等。其中Al2O3算是最经济的选择,虽然它具有相对较高的机械强度,但是与其他材料相比,导热系数方面显得便弱了很多,相对来说不太契合后续功率器件的发展要求;AlN具有更高的导热率,CTE与硅几乎相同,有效地降低了分层和焊料疲劳等问题,但机械强度在较大的热循环中还不够有优势。Si3N4的CTE也非常接近半导体芯片,同时提供了很好的机械强度和热疲劳能力,但成本和供应相对来说算是一个“弱点”,但当下我们在高性能模块中还是很常见的,氮化硅基板的使用在未来应该会变得越为常见。

基于这个,我们再来聊一聊绝缘基板。

氮化硅DBC和AMB

DBC(直接键合铜)技术和AMB(活性金属钎焊)技术,目前最常见的两种基板敷铜工艺,下面是两种制造过程的简单示意图。

f9d6fecc-7030-11ee-939d-92fbcf53809c.png

DBC的基本原理是在铜和陶瓷基板之间引入氧元素,在约1000℃时形成Cu/O共晶液相,进而与陶瓷基板进行粘附。但AlN和Si3N4等则需要首先在其表面进行一层氧化,才能够满足传统的DBC工艺。

f9e5f350-7030-11ee-939d-92fbcf53809c.png

AMB的基本原理是在900℃的温度下,含有活性元素Ti、Zr的焊料在陶瓷和金属的界面润湿并反应,从而实现粘合。

f9f973da-7030-11ee-939d-92fbcf53809c.png

上面所示的SEM电镜扫描界面图,我们可以更为清楚地看到每一层。

Si3N4陶瓷基板特性

热阻

铜金属化基板的热阻主要取决于陶瓷基本材料,下表是AlN和Si3N4基板搭配0.3mm的铜层后的热阻对比,由于热阻Rth和厚度成正比,所以氮化硅厚度是氮化铝一半时,热阻几乎一致。

fa1c01e8-7030-11ee-939d-92fbcf53809c.png

并且我们可以看到,其他条件相同的前提下,Si3N4采用DBC和AMB的情况下热阻也几乎一样。

热冲击

为了了解几种不同陶瓷基板可靠性,通过热冲击测试对他们进行表征对比,下面是AlN、Al2O3、HPS、Si3N4(DBC&AMB)的对比。

fa26d9ec-7030-11ee-939d-92fbcf53809c.png

我们可以看到,相同条件下,Si3N4的DBC基板比常见的Al2O3的DBC基板抗热冲击的能力提高了20倍,而其AMB基板(0.5mm铜层)更是超过了50倍。

电绝缘性能

对几种陶瓷基板进行了局部放电和击穿强度测试,测试条件:球电极50Hz交流电,变化速率1kV/s,在5kV下测量局部放电,增加电压直到出现击穿。测试结果如下,

fa3d55d2-7030-11ee-939d-92fbcf53809c.png

所有陶瓷基板的电绝缘性能都还不错,所以一般我们都不太会谈及这方面的影响。

Layout 建议

fa64ea66-7030-11ee-939d-92fbcf53809c.png

AMB陶瓷基板的绝缘间隙必须略大于DBC的,去除钎焊材料的必要刻蚀工艺限制的这方面的最小尺寸。高功率密度的需求意味着更高的电流,而AMB允许更厚的铜层(0.3mm~0.8mm),即能够拥有更高的电流承载能力。

应用

下面是文章中给到的陶瓷基板隔离电压和导热系数相关的应用领域分布图,

fa870204-7030-11ee-939d-92fbcf53809c.png

以及不同陶瓷基板的特性优劣和对应的相关应用对比,

faa66748-7030-11ee-939d-92fbcf53809c.png

小结

今天的内容主要在于了解Si3N4的DBC和AMB陶瓷基板的相关特性,以及和几种主要陶瓷基板之间的比较。就像任何事情基本都会谈及的一个关键因素“成本”,我们更多的时候看到的还是传统的Al2O3 DBC基板,或者是为了增加机械强度而掺杂9%氧化锆的HPS基板。只有在一些追求性能更优,成本能够权衡的领域可以看到Si3N4 DBC或者AMB基板。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 隔离电压
    +关注

    关注

    0

    文章

    75

    浏览量

    16097
  • DBC
    DBC
    +关注

    关注

    2

    文章

    55

    浏览量

    7817
  • 功率半导体
    +关注

    关注

    22

    文章

    1183

    浏览量

    43148
  • 半导体芯片
    +关注

    关注

    60

    文章

    919

    浏览量

    70760
  • AMB
    AMB
    +关注

    关注

    0

    文章

    21

    浏览量

    6032

原文标题:Si3N4 DBC和AMB陶瓷基板

文章出处:【微信号:功率半导体那些事儿,微信公众号:功率半导体那些事儿】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    文解读玻璃基板陶瓷基板、PCB基板的优缺点及适用领域

    在半导体封装和电子制造领域,基板材料的选择对于设备性能和应用效果至关重要。玻璃基板、柔性基板陶瓷基板以及印刷电路板(PCB)
    的头像 发表于 01-02 13:44 528次阅读
    <b class='flag-5'>一</b>文解读玻璃<b class='flag-5'>基板</b>与<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>、PCB<b class='flag-5'>基板</b>的优缺点及适用领域

    玻璃基板、柔性基板陶瓷基板的优劣势

    在半导体封装领域,玻璃基板、柔性基板陶瓷基板各自具有独特的优势和劣势,这些特性决定了它们在不同应用场景中的适用性。
    的头像 发表于 12-25 10:50 471次阅读
    玻璃<b class='flag-5'>基板</b>、柔性<b class='flag-5'>基板</b>和<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>的优劣势

    金融界:万年芯申请预置焊接合金材料的陶瓷基板专利

    金融界消息称:江西万年芯微电子有限公司申请项名为“预置焊接合金材料的陶瓷基板焊接方法及陶瓷基板焊接件”的专利。此前万年芯微电子已经多次获得
    的头像 发表于 11-29 14:22 151次阅读
    金融界:万年芯申请预置焊接合金材料的<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>专利

    高功率器件设备散热用陶瓷基板 | 晟鹏耐高温高导热绝缘片

    能。氧化铝基板,而日本京瓷也很早便开始了陶瓷基板的研究,据日本京瓷创始人稻盛和夫自传中介绍:1966年4月,喜讯传来。我们得到了期望已久的IBM公司的订单——2500万个
    的头像 发表于 10-23 08:03 594次阅读
    高功率器件设备散热用<b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b> | 晟鹏耐高温高导热绝缘片

    DBC陶瓷基板 | 氮化硼耐高温高导热绝缘片

    随着电子技术的发展,芯片的集成度不断提高,电路布线也越来越细。因此,每单位面积的功耗增加,导致发热增加和潜在的设备故障。直接粘合铜(DBC陶瓷基板因其优异的导热性和导电性而成为重要的电子封装材料
    的头像 发表于 09-18 08:02 609次阅读
    <b class='flag-5'>DBC</b><b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b> | 氮化硼耐高温高导热绝缘片

    应力记忆技术介绍

    应力记忆技术(Stress Memorization Technique, SMT),是种利用覆盖层Si3N4单轴张应力提高90nm 及以下工艺制程中 NMOS速度的应变硅技术。淀积覆盖层
    的头像 发表于 07-29 10:44 1791次阅读
    应力记忆技术介绍

    高导热陶瓷基板,提升性能必备

    与制作方法,起来看看吧~ 高导热陶瓷基板特点 1.高热导率:高导热陶瓷基板的热导率通常在几十瓦每米开尔文以上,远高于传统的
    的头像 发表于 07-23 11:36 373次阅读

    陶瓷基板技术PK:DBC vs DPC,你站哪边?

    陶瓷基板,作为现代电子封装领域的关键部件,因其出色的热稳定性、机械强度和电气性能而受到广泛关注。其中,直接敷铜(Direct Bonding Copper,简称DBC陶瓷
    的头像 发表于 06-27 09:42 2076次阅读
    <b class='flag-5'>陶瓷</b><b class='flag-5'>基板</b>技术PK:<b class='flag-5'>DBC</b> vs DPC,你站哪<b class='flag-5'>一</b>边?

    5G路由器相比4G有哪些优势(5g科普)

    大家好,今天我们来5G路由器相比4G有哪些优势,以及它将如何改变我们的生活。 首先,5G路由器最显著的优势就是速度快。5G网络的速度可以达到4
    的头像 发表于 04-26 10:35 653次阅读

    简单彩色转灰度的算法

    R、G、B 分别代表3个原色分量字节,BGR就表示个像素。为了看起来方便在每个像素之间插了个空格,实际上是没有的。X表示补足4的倍数而自动插入的字节。为了符合人类的阅读习惯分行了,其实在计算机内存中应该看成连续的
    的头像 发表于 04-18 10:32 484次阅读
    简单<b class='flag-5'>聊</b><b class='flag-5'>一</b><b class='flag-5'>聊</b>彩色转灰度的算法

    “阻抗修正”去嵌入

    在非标准接口器件测试中,使用去嵌入方法消除测试夹具等对测试结果的影响已经被很多小伙伴们熟知。在最新的R&S ZNA/ZNB系列矢量网络分析仪(简称:矢网)界面中,加入了“Deembed Assistant(去嵌助手)”,可以帮助各位小伙伴轻松完成去嵌入的操作。
    的头像 发表于 04-17 14:18 1472次阅读
    <b class='flag-5'>聊</b><b class='flag-5'>一</b><b class='flag-5'>聊</b>“阻抗修正”去嵌入

    电感的特性都有哪些

    电感是闭合回路中的种属性,是衡量产生电磁感应能力的物理量。我们常说的电感指的是电感器,是自感,用符号 L 表示。
    的头像 发表于 03-29 14:01 1346次阅读

    MCU和SoC的区别

    微控制器是单个集成电路(IC)上的小型计算机,包含处理器内核、内存、可编程输入/输出(I/O)外设、定时器、计数器等。它只提供最小的内存、接口和处理能力。
    发表于 03-26 11:39 3604次阅读

    下常见的几种无线遥控器及其可能使用的晶振频率

    无线遥控器可以分为四种类型,其中每种类型可能采用不同的频率晶振。今天KOAN凯擎小妹下常见的几种无线遥控器及其可能使用的晶振频率。
    的头像 发表于 03-22 14:29 5350次阅读

    AMB基板怎样做防氧化处理?

    随着电子技术的飞速发展,AMB(Active Metal Brazed)基板作为种高性能的电子封装材料,被广泛应用于航空航天、军事、通信、医疗等领域。AMB
    的头像 发表于 03-22 10:22 733次阅读
    <b class='flag-5'>AMB</b><b class='flag-5'>基板</b>怎样做防氧化处理?