0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用3D生物打印构建关节类器官的策略与应用

微流控 来源:BioMed科技 2023-10-22 10:01 次阅读

骨关节炎(OA)是一种导致成人疼痛和残疾的慢性疾病,影响全球约3亿人。它是由软骨损伤引起的,包括细胞炎症和细胞外基质(ECM)的破坏,由于软骨组织中缺乏血管和神经,导致自我修复能力有限。关节软骨独特的生物学特性和机械结构使关节软骨的重建成为巨大的挑战。在多种策略中,类器官技术作为一种新兴的软骨修复策略,显示出巨大的潜力。类器官是由体外培养的干细胞衍生的三维(3D)组织结构,模仿相应器官的组织和功能。它们为研究和开发提供了生理学相关的系统。关节类器官的构建可以模拟关节在体内的微环境,建立骨关节炎、类风湿关节炎等疾病模型,并可用于关节植入物的药物筛选和生物材料评价。

目前关节类器官的发展仍处于起步阶段,构建关节类器官仍存在众多挑战。近年来,3D生物打印和再生医学的发展为构建关节类器官提供了新的可能性。3D生物打印具有高通量、高精度和自动化等优点,可以被用来制造具有复杂结构的关节类器官,从而模拟真实的关节微环境。立体结构为细胞和组织渗透到结构内部中提供了空间,促进更好的组织-关节类器官整合,并扩大了细胞附着和生长的面积。此外,由3D生物打印技术构建的关节类器官由于其空间特性和机械结构,可以承受植入关节中存在的高水平的压缩和剪切载荷。

因此,目前对关节类器官构建的研究有限,仍然是一个具有挑战性的研究领域。 近期,上海交通大学新华医院苏佳灿教授团队从3D建模、打印方式、生物墨水和培养条件四点总结了3D生物打印构建关节类器官的方法,重点概述了3D生物打印在构建关节类器官方面的相关研究,创新性地提出了关节类器官构建的阶段性策略,为关节类器官的构建提供了崭新的思路。该综述文章以“Small joint organoids 3D bioprinting: Construction strategy and application”为题,发表在Small期刊上。上海交通大学附属新华医院苏佳灿教授、上海大学任肖湘助理研究员与西安红会医院周凤金教授为文章的共同通讯作者。

f64feda0-6fee-11ee-939d-92fbcf53809c.png

考虑到关节组织的复杂组成,包括不同的细胞类型和排列在特定3D结构中的细胞外基质组件,生物3D打印结构提供了紧密模拟关节组织复杂结构的能力。3D生物打印允许对不同的细胞类型和材料进行精确定位,从而能够创建具有更准确和更真实结构的组织。在该综述中,作者介绍了3D生物打印构建关节类器官的关键流程和技术,如3D建模、3D生物打印、生物墨水和培养微环境。

f66c4f72-6fee-11ee-939d-92fbcf53809c.png

图1 三维打印构建关节类器官的关键步骤和技术

3D建模

3D打印是一种多功能技术,可以根据计算机模型以精确、预定义的方式组合材料和细胞。这种方法允许制造高度复杂的结构,使其成为构建关节组织的一种很有前途的技术。设计和创建关节类器官需要使用CAD、3DMAX和Solidworks等软件来构建打印模型。

在3D打印之前,使用计算机断层扫描和磁共振成像等成像技术来定位和分析关节,从而创建在解剖学上与骨缺陷匹配的精确模型。该模型可作为打印过程的蓝图,允许使用计算机辅助设计和制造(CAD-CAM)对关节进行精确构建。3D打印正在迎来患者个性化定制的新时代,在实现模型或设备的最大准确性和功能方面发挥着关键作用。

打印技术

打印技术也是3D生物打印的关键组成部分,因为它可以影响打印的类器官的分辨率、细胞活力和材料特性。此外,作者还总结了适合于构建类器官的打印方法,并为构建关节类器官提供了有价值的见解。通过综合考虑打印方法和设备,研究人员可以优化打印过程,以制备高质量的关节类器官,用于药物开发和再生医学应用。

f6871564-6fee-11ee-939d-92fbcf53809c.png

图2 四种不同的印刷方法

生物墨水

除了打印技术,生物墨水是3D生物打印的另一个重要元素。对于关节类器官来说,理想的生物墨水应该为软骨细胞和各种骨细胞的生长和分化提供良好的微环境,并具有足够的机械强度来模拟骨组织的形态结构,并具有负载效应。与传统的3D打印不同,3D生物打印需要具有高生物相容性和生物可降解性的材料。水凝胶已经成为一种适合3D生物打印的生物材料,为细胞存活、增殖和分化提供了一个培养环境。 生物3D打印关节类器官的构建策略 关节是由多种组织组成的复杂结构,包括髌下脂肪垫、肌腱、韧带和半月板。然而,构建完整的关节类器官来模拟关节各部分的动态环境仍非常困难。因此,在该综述中,作者提出了构建关节类器官的三部曲。

f6b4f43e-6fee-11ee-939d-92fbcf53809c.png

图3 生物3D打印关节类器官的构建策略

基础关节类器官

首先,在构建复杂的高级关节类器官之前,应先建立基本的关节类器官,即基于生物活性材料(如GelMA、HAP等)和干细胞(如骨干细胞、胚胎干细胞等)定向分化的三维骨软骨组织。因此,选择合适的细胞和生物材料对于构建基本关节类器官至关重要。起始细胞类型可以决定体外类器官成熟的水平。对于关节类器官,潜在的细胞来源包括hiPSCs和间充质干细胞。

f6cd716c-6fee-11ee-939d-92fbcf53809c.png

图4 基础关节类器官

结构化关节类器官

第二步,在基础关节类器官之上,构建结构化的关节类器官。这方面的关键策略是探索3D生物打印的使用和可以打印的结构类型。不同的生物3D打印技术在结构化构造种各有优缺点。挤出式打印的同轴和双通道喷头更适合于快速成型器官的构造,而投影光固化打印具有更高的分辨率,能够打印更精确的结构。大量研究已经证明了结构对细胞分化和迁移的重要性,而3D打印的逐层制造允许材料在支架中均匀分布和控制纳米结构。

利用3D生物打印技术可以实现精确和复杂的结构来复制骨骼结构。具有分级孔隙度的支架与天然骨的多孔结构非常相似,因此设计具有不同孔隙度的关节类器官可能是一种很有前途的策略。材料的孔隙率也与其压缩模量和屈服应力有关,因此多孔结构不仅可以向细胞输送营养物质,还可以模拟关节所经历的应力。受自然生物启发构建关节类器官也是一种很有前途的策略。例如,海绵、海螺形状的支架都可以有效地定向骨生长。这些天然结构不仅具有足够的机械强度来模拟关节的应力,而且还能有效地引导细胞生长。

f709565a-6fee-11ee-939d-92fbcf53809c.png

图5 结构化关节类器官

功能化关节类器官

最后,关节类器官的功能化是一个关键步骤,它涉及将各种活性因子,包括将生长因子、外泌体和囊泡纳入生物墨水,这可以调节细胞行为并诱导细胞分化。例如,转化生长因子β1和骨形态发生蛋白分别可以促进软骨细胞和成骨细胞的分化。此外,光聚合物和光热剂可用于创建具有光热响应和弹性体性能的结构,从而实现4D打印。

f72c678a-6fee-11ee-939d-92fbcf53809c.png

图6 功能化关节类器官

综上所述,与传统的二维细胞培养和动物模型相比,利用3D生物打印构建的关节类器官可以更好地模拟关节的复杂三维结构和微环境,并更加准确地反映生理和病理状态。然而,构建关节类器官是一个复杂的过程,需要考虑多种细胞类型、生物材料组合和生长因子调节。关节类器官的可重复性和稳定性仍然需要改进,如干细胞定向分化、血管化和免疫化等挑战是关键问题。尽管存在这些挑战,3D生物打印和干细胞研究在构建关节类器官方面具有巨大的潜力。使用先进的生物材料技术,包括生物纳米材料、纳米材料和可生物降解材料,将更有效和可持续地构建关节类器官。总之,关节类器官提供了更准确的关节结构和微环境表征,相信3D生物打印作为一种新方法将为关节组织建模和关节疾病治疗提供无限可能。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CAD
    CAD
    +关注

    关注

    17

    文章

    1070

    浏览量

    72264
  • 磁共振成像
    +关注

    关注

    0

    文章

    20

    浏览量

    8581
  • 3D打印
    +关注

    关注

    26

    文章

    3532

    浏览量

    108712

原文标题:综述:利用3D生物打印构建关节类器官的策略与应用

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    3D打印技术应用的未来

    进一步拓宽 生物医疗 : 3D打印技术能够根据患者的具体需要定制化生产义肢、植入物等,极大地提高了医疗效果和患者的生活质量。 未来,3D打印
    的头像 发表于 10-25 09:28 342次阅读

    物联网行业中的模具定制方案_3D打印技术分享

    3D打印技术的基本原理是断层扫描的逆过程。断层扫描是把某个东西“切”成无数叠加的片,3D 打印则是通过连续的物理层叠加,逐层增加材料来生成三维实体技术,因此
    的头像 发表于 10-09 09:54 176次阅读
    物联网行业中的模具定制方案_<b class='flag-5'>3D</b><b class='flag-5'>打印</b>技术分享

    物联网行业中的模具定制方案_3D打印材料选型分享

    3D打印材料介绍 3D打印技术是一种快速制造技术,它可以将数字模型转化为实体物体。3D打印材料是
    的头像 发表于 09-25 10:59 259次阅读
    物联网行业中的模具定制方案_<b class='flag-5'>3D</b><b class='flag-5'>打印</b>材料选型分享

    安泰功率放大器在微纳光固化3D打印中的具体应用

    功率放大器在微纳光固化3D打印中的应用,以及微纳光固化3D打印的原理。 微纳光固化3D打印的原理
    的头像 发表于 09-10 11:37 279次阅读
    安泰功率放大器在微纳光固化<b class='flag-5'>3D</b><b class='flag-5'>打印</b>中的具体应用

    3D打印耗材控湿方案--无水电解除湿器

    3D打印耗材湿度是指材料中水分的含量,对于3D打印工艺和打印效果具有重要影响。在3D
    的头像 发表于 09-03 10:20 358次阅读
    <b class='flag-5'>3D</b><b class='flag-5'>打印</b>耗材控湿方案--无水电解除湿器

    3D打印汽车零部件建模设计3D打印服务

    传统的汽车零件制造过程需要经过多个环节,包括设计、制造、装配等,耗时且复杂。而采用3D打印技术制造汽车零件可以大幅度缩短生产周期。设计人员可以通过CAD软件直接进行零件设计,并将设计文件转化为3D
    的头像 发表于 07-21 15:01 440次阅读
    <b class='flag-5'>3D</b><b class='flag-5'>打印</b>汽车零部件建模设计<b class='flag-5'>3D</b><b class='flag-5'>打印</b>服务

    UltiMaker正式推出了工业级3D打印机—UltiMaker Factor 4

    与之前的UltiMaker S系列桌面3D打印机不同,全球3D打印领域的领导者UltiMaker正式推出了工业级3D
    的头像 发表于 05-09 16:58 449次阅读

    多尺度浸入式3D打印策略,用于人体组织和器官的精准制造

    生物3D打印技术被认为是实现复杂人体组织和器官构建的最有前景的技术方案之一。近年来,浸入式墨水书写技术作为
    的头像 发表于 04-20 11:43 865次阅读

    3D打印机防静电保护

    工艺和材料不同,设备主要分为桌面级3D打印机、工业级3D打印机、生物3D
    的头像 发表于 04-19 20:17 257次阅读
    <b class='flag-5'>3D</b><b class='flag-5'>打印</b>机防静电保护

    晶振在3D打印技术中的应用都有哪些?

    3D打印过程中,需要进行大量的数据处理,包括模型的切片、打印路径的规划等。
    的头像 发表于 03-17 11:29 536次阅读

    种新型适用于太空的生物打印设备

    科研人员开发了一种嵌入式3D生物打印策略利用一种悬浮培养基既能3D
    的头像 发表于 01-11 09:55 426次阅读
    种新型适用于太空的<b class='flag-5'>生物</b><b class='flag-5'>打印</b>设备

    CASAIM沙盘模型3D打印的优势和应用

    随着3D打印技术的不断发展,沙盘模型3D打印已经成为建筑行业中的一项创新应用。这种技术能够将设计师的创意以实体形式呈现,为建筑项目的沟通和展示提供了更加直观和便捷的方式。本文将介绍CA
    的头像 发表于 12-19 16:44 530次阅读
    CASAIM沙盘模型<b class='flag-5'>3D</b><b class='flag-5'>打印</b>的优势和应用

    提供3D打印材料与解决方案,助力3D打印产业发展

    提供3D打印材料与解决方案,助力3D打印产业发展
    的头像 发表于 12-12 11:12 490次阅读

    用于器官/器官芯片的便携式微流控自动灌流系统开发

    器官技术是近年发展的前沿生物技术,是一种三维(3D)细胞培养系统
    的头像 发表于 11-15 10:32 1186次阅读
    用于<b class='flag-5'>类</b><b class='flag-5'>器官</b>/<b class='flag-5'>器官</b>芯片的便携式微流控自动灌流系统开发

    南京理工在3D打印生物光纤研究中获重要进展

    近日,南京理工大学电子工程与光电技术学院沈华教授课题组成功利用自研的悬浮式投影光固化3D打印方法制备出了一种高效、稳定的新型生物光接口—渐变折射率水凝胶光纤
    的头像 发表于 11-14 10:30 783次阅读
    南京理工在<b class='flag-5'>3D</b><b class='flag-5'>打印</b><b class='flag-5'>生物</b>光纤研究中获重要进展