0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

忆阻器,你了解吗?全球首颗清华忆阻器存算一体芯片究竟是个啥?

泰克科技 来源:未知 2023-10-27 15:55 次阅读
wKgaomU7bgOAG2bdAAAC2xft_Qs900.png 点击上方泰克科技 关注我们!

芯片算力提升

随着ChatGPT强势来袭,AI人工智能应用层出不穷。智能化时代,数据量指数型增长,摩尔定律已经不能满足当前的数据处理需求,元器件的物理尺寸已经接近极限。人工智能的硬件平台面临两大艰巨挑战:算力不足和能效过低。那么,有什么方法提高芯片的算力呢?

其实关键还是在于系统设计和芯片加工。系统设计,重在高性能微架构和先进算术运算,芯片加工则有赖于先进工艺制程和先进封装制备。本期,我们试着从芯片架构方面,探讨芯片算力提升的话题

(一)

计算芯片架构趋势:存算一体

现在,无论是CPU还是GPU,采用的都是70年前的冯.诺伊曼体系架构。冯诺依曼体系结构是现代计算机的基础。在冯诺依曼架构中,计算和存储功能分别由中央处理器和存储器完成。计算机的CPU和存储器是相互独立发展的,也就是CPU和内存是在不同芯片上的,它们之间的通信要通过总线来进行。数据量少的时候没问题,但一旦数据变多,总线本身就会拥挤成为瓶颈。而现在的GPU,并行处理能力越来越强。当数据传输速度不够时,就会限制算力的天花板, 严重影响目标应用程序的功率和性能。

wKgaomU7bgOAA-h9AATBEx5vqZU997.png

业界很多也都在研究相关的解决方案,以实现更为有效的数据运算和更大的数据吞吐量,其中“存算一体”被认为是未来计算芯片的架构趋势。它是把之前集中存储在外面的数据改为存在GPU的每个计算单元内,每个计算单元既负责存储数据,又负责数据计算。

这几天,清华大学研制出全球首颗全系统集成的、支持高效片上学习(机器学习能在硬件端直接完成)的忆阻器存算一体芯片,可谓刷爆行业媒体圈。这项最新的研究证明了在全集成忆阻器存算一体系统上实现矩阵向量乘法的可行性。据了解,清华大学的研究团队对芯片算法、系统、架构、电路与器件进行了全层次协同优化设计:

器件层面,实现300万个具有高模拟编程性的忆阻器与CMOS电路的单片集成;

电路层面,提出电压模神经元电路,支持可变精度计算、激活操作、低功耗模数转换;

架构层面,提出双向TNSA(transposable neurosynaptic array)架构,以最小的面积、能耗开销实现灵活的数据流重构;

系统层面,48个CIM核心支持多种权重映射方案,提高推理任务并行度;算法层面,利用多种硬件-算法协同优化方案,降低硬件非理想特性对准确率的影响。

传统计算系统,其计算器件用的是场效应晶体管,计算范式是布尔逻辑数字计算,架构采用的是存算分离;而存算一体计算系统的计算器件是忆阻器,计算范式用的是物理定律模拟计算,架构是存算一体。存算一体架构彻底消除了数据在逻辑处理器与存储芯片之间的搬迁问题,减少能量消耗及延迟。据公开资料显示,相同任务下,该芯片实现片上学习的能耗仅为先进工艺下专用集成电路ASIC)系统的1/35,同时有望实现75倍的能效提升。

摩尔定律很好的归纳了信息技术进步的速度,但随着半导体芯片技术的快速发展,摩尔定律已经不太适用于现在的半导体芯片发展规律了。冯诺依曼架构遇到了瓶颈,这时便需要忆阻器的魔力,来实现存算一体,打破传统的冯诺依曼架构,开拓新的存储器道路。谈到这里,我们就必须来认识认识忆阻器这个非线性电路元件了。

wKgaomU7bgOAJKU_AABCOzcrVZc763.png  

了解更多

扫码下载忆阻器/神经元网络测试白皮书,并申请技术支持!

wKgaomU7bgSAI-7vAAGUCJkSnGI829.gif

(二)

忆阻器的发展

忆阻器英文名为memristor, 也被称为阻变存储器(RRAM),用符号M表示,与电阻R,电容C,电感L构成四种基本无源电路器件。它是连接磁通量与电荷之间关系的纽带,同时具备电阻和存储的性能,是一种新一代高速存储单元。其功耗,读写速度都要比传统的随机存储器优越,是硬件实现人工神经网络突触的最好方式,主要应用于非易失存储、逻辑运算以及类脑神经形态计算。

wKgaomU7bgSAOFHVAAQUQSIYCTU373.png

忆阻器全称记忆电阻,是一种具有电荷记忆功能的非线性电阻,于1971年,由加州大学伯克利分校的华裔科学家蔡少棠教授提出。蔡教授从电路完整性角度出发,从数学上推导出忆阻器的概念。不过,由于缺乏实验的支撑,而且传统存储器在工艺上和摩尔定律契合的很好,一直在刷新着自己的存储极限,所以在那之后的很长一段时间,人们认为没有必要花费时间和金钱去研究忆阻器。

忆阻器发展的拐点,发生在2000年之后。2000-2008年,A Beck等人在Cr掺杂的SrZrO3中观察到忆阻器滞回曲线,并指出器件具有存储功能,2006年HP实验室证明了Crossbar RRAM,并于2008年在《Nature》发表了“下落不明的忆阻器找到了”的相关文章,同年,HP公司制备出忆阻器。科学家们开始意识到忆阻器的优势和作用,全世界相关科学家都纷纷参与到忆阻器的研究中来,忆阻器研究高潮就此到来。

类脑计算及神经形态计算是当今科研热点之一,忆阻器是神经元网络的核心器件,它为发展信息存储与处理融合的新型计算体系架构,突破传统冯·诺伊曼架构瓶颈,提供了可行的路线,其性能直接影响神经元网络的计算能力。

下面为大家分享一段教学视频,是清华大学高滨教授主讲的“忆阻器存算一体芯片与类脑计算”。高滨老师表示,现有计算系统普遍采用存储和运算分离的架构,存在存储墙与功耗墙瓶颈,严重制约了系统算力和能效的提升。存算合一的电子突触就是忆阻器。不过,忆阻器也面临着严峻的挑战。核心挑战之一是器件非理想特性,即忆阻器件性能存在离散性和不稳定性,严重影响计算精度;另一个关键挑战就是模拟计算的误差累积。

清华大学高滨教授的教学报告视频

高滨教授介绍,解决的办法就是存算一体芯片的协同设计。存算一体芯片急需跨层次的协同优化方案,单一层面的优化已经难以达到高性能。其实忆阻器研究的每一次推进和成功,都离不开测试设备提供的数据支持。高滨表示:“测试设备的进步,为忆阻器的研发做出了重要的贡献!”

wKgaomU7bgSAM_pkAAM-EMe5Rpc894.png

高滨教授关于忆阻器研究的几个关键时间点

(三)

忆阻器电学测试现状与展望

存算一体技术对忆阻器特性要求非常高,测试难度也很大。通常,忆阻器的测试可分为三大类,即:

忆阻器基础研究测试,包括忆阻器参数表征、分类及测试流程,以及分析器件在相应的交流、直流、脉冲电信号作用下的忆阻特性;

忆阻器性能研究特性,旨在提高忆阻器存储性能和模拟神经元的性能,如功耗、擦写速度、集成度和可靠性等各方面;

最后是忆阻器集成及应用研究测试,忆阻器单元集成结构是实现阵列忆阻器的关键,如1T1R、1TNR等cell及阵列结构的测试。

如果忆阻器被用于神经元方面的研究,其性能测试除了擦写次数和数据保留时间外,还需要进行神经突触阻变动力学测试。

wKgaomU7bgSABo9EAAQPB-ph0PE240.png

泰克公司在忆阻器测试方面有着成熟的方案,丰富的经验,以及很高的市场占有率。如果您有兴趣深度学习忆阻器测试相关的知识、了解测试手段及方案,可点击阅读原文,下载忆阻器/神经元网络测试白皮书,并申请技术支持。

点击阅读原文了解更多

欲知更多产品和应用详情,您还可以通过如下方式联系我们:

邮箱:china.mktg@tektronix.com

网址:tek.com.cn

电话:400-820-5835(周一至周五900)

wKgaomU7bgSAUppSAAAjnzUztYo805.pngwKgaomU7bgSAU3t3AAAoSTIg-D8684.jpg

将您的灵感变为现实

我们提供专业的测量洞见信息,旨在帮助您提高绩效以及将各种可能性转化为现实。
泰克设计和制造能够帮助您测试和测量各种解决方案,从而突破复杂性的层层壁垒,加快您的全局创新步伐。我们携手共进,一定能够帮助各级工程师更方便、更快速、更准确地创造和实现技术进步。

wKgaomU7bgSASjzcAAgQPXjE_Lg914.png

扫码添加“泰克工程师小助手”

立享1对1专属服务!

wKgaomU7bgWAGBY3AAAVO6TdRKc542.gif

点击“阅读原文”了解更多!


原文标题:忆阻器,你了解吗?全球首颗清华忆阻器存算一体芯片究竟是个啥?

文章出处:【微信公众号:泰克科技】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 泰克科技
    +关注

    关注

    2

    文章

    169

    浏览量

    19091

原文标题:忆阻器,你了解吗?全球首颗清华忆阻器存算一体芯片究竟是个啥?

文章出处:【微信号:泰克科技,微信公众号:泰克科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    TDK成功研发出用于神经形态设备的自旋

    TDK公司宣布其已成功研发出款超低能耗的神经形态元件--自旋。通过模拟人脑高效节能的运行模式,该元件可将人工智能(AI)应用的能耗降至传统设备的百分之
    的头像 发表于 10-14 11:00 346次阅读

    诱导的超混沌、多涡旋和极端多稳态小数阶HNN:镜像加密和FPGA实现

    电子发烧友网站提供《诱导的超混沌、多涡旋和极端多稳态小数阶HNN:镜像加密和FPGA实现.pdf》资料免费下载
    发表于 06-03 14:46 0次下载

    通向计算新未来,自旋步降低能耗

    的全称是记忆电阻,是种表示磁通和电荷关系的电路元件。通过测定的阻值,可知道流经它的电荷量,从而有记忆电荷的作用。
    的头像 发表于 04-30 00:53 3652次阅读

    如何利用技术改变高精度的科学计算

    当组织成纵横阵列时,这种电路通过以大规模并行方式使用物理定律进行模拟计算,从而大大加速矩阵运算,这是神经网络中最常用但非常耗电的计算。
    发表于 04-03 15:18 571次阅读

    吸尘究竟是如何替“吃灰”的【其利天下技术】

    如今,吸尘已成为大多数人居家必备的小家电产品,那么说起吸尘对吸尘了解多少呢?不知道大家知不知道它的原理是什么?今天我们就来说
    的头像 发表于 03-07 21:17 817次阅读
    吸尘<b class='flag-5'>器</b><b class='flag-5'>究竟是</b>如何替<b class='flag-5'>你</b>“吃灰”的【其利天下技术】

    基于VO2的无线物联网混合系统

    针对此问题,北京大学集成电路学院/集成电路高精尖创新中心的杨玉超教授团队首次提出以VO2 为主体的高致性、可校准的频率振荡,在此基
    的头像 发表于 02-22 09:30 591次阅读

    一体芯片如何支持Transformer等不同模型?

    后摩智能致力于打造通用人工智能芯片,自主研发的一体芯片在支持各类模型方面表现突出,包括YOLO系列网络、BEV系列网络、点云系列网络等。
    的头像 发表于 01-05 14:14 1240次阅读

    清华大学研究小组开发出了创新性的超分子纳米RRAM

    其中,电阻式随机存取存储(RRAM)依靠改变电阻水平来存储数据。最近发表在《Angewandte Chemie》杂志上的项研究详细介绍了清华大学李原领导的研究小组的工作,他们开创了
    的头像 发表于 12-06 16:05 818次阅读
    <b class='flag-5'>清华</b>大学研究小组开发出了创新性的超分子<b class='flag-5'>忆</b><b class='flag-5'>阻</b><b class='flag-5'>器</b>纳米RRAM

    浅谈为AI大力而生的-芯片

    大模型爆火之后,一体获得了更多的关注与机会,其原因之是因为
    发表于 12-06 15:00 351次阅读
    浅谈为AI大<b class='flag-5'>算</b>力而生的<b class='flag-5'>存</b><b class='flag-5'>算</b>-<b class='flag-5'>体</b><b class='flag-5'>芯片</b>

    【云姑娘叨叨系列】带你探索电学世界里的神秘器件——

    点击上方 “泰克科技” 关注我们! 电阻、电容器、电感是常见的三种电学器件,大家对他们再熟悉不过,但今天要和大家分享的,是
    的头像 发表于 11-21 15:50 808次阅读
    【云姑娘叨叨系列】带你探索电学世界里的神秘器件——<b class='flag-5'>忆</b><b class='flag-5'>阻</b><b class='flag-5'>器</b>

    基础研究测试

    种具有电荷记忆功能的非线性电阻,通过控制电流的变化可改变其阻值,自从2008年HP公司制备出了
    的头像 发表于 11-20 16:30 604次阅读
    <b class='flag-5'>忆</b><b class='flag-5'>阻</b><b class='flag-5'>器</b>基础研究测试

    一体成型贴片电感在使用中发热究竟是否会影响运行

    电子发烧友网站提供《一体成型贴片电感在使用中发热究竟是否会影响运行.docx》资料免费下载
    发表于 11-13 16:28 1次下载