0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于南方某市的电动汽车充电数据分析电动汽车充电负荷预测

张燕婷 来源:jf_81470333 作者:jf_81470333 2023-10-31 11:26 次阅读

1影响电动汽车充电负荷特性的因素充电

开始时间、充电持续时间、充电功率是影响电动汽车充电负荷特性的关键因素。下文将针对其进行分析。

1.1开始充电时间

用户的充电开始时间取决于车辆的类型以及用户的个人行为等。之前的研究多是以燃油车的出行特性来近似代替电动汽车的出行特性,例如文献[13]采用NHTS(NationalHouseholdTravelSurvey)的数据,将燃油汽车*后一次出行的结束时刻近似视为开始充电时间t,如式⑴所示,/与其频率满足正态分布,其中儿、久分别为t的期望和标准差。

wKgZomVAc9CAaetZAAAeQGVWcnU266.png

1.2充电持续时间

充电持续时间Char决定了充电时间的长短,取决于充电电量Q和充电功率P。通过式(2)得到,即:考虑到车型的不同,充电电量Q难以确定,文献[14]研究了交通以及气温状况对充电电量的影响,文献[15]将用户每次用车时的电池电荷状态SOC的概率密度函数(StateofCharge)视为正态分布,通过概率密度函数随机抽取得到SOC,通过式(3)即可得到充电电量Q,其中a为期望充电完成后的荷电状态,一般来说a取为1,E为满电电量。

Q=(.a-SOC)xE(3)文献[16]亦根据NHTS的数据,将日行驶里程L视为满足对数正态分布。通过式(4)得到日行驶里程Z,其中“d"d分别为Ini的期望和标准差

wKgaomVAc9GAVGT0AAAgbG-wfk8762.png

通过式(5),得到充电电量Q。其中s为每公里耗电量,a—般取1。Q=aX.SxL

(5)这些做法由于缺乏实际的电动汽车充电数据,导致将数量庞大的电动汽车难以确定的满电电量E、每公里耗电量S、充电功率P等均视为一个定值,过于理想化的设定会降低模型的精度,使得*终的充电负荷预测结果会有偏差。而文中采用的是处理后的开始充电时间、充电电量,以及充电功率这些实际充电行为数据,更加符合实际状况。

1.3充电功率

充电功率P直接决定了充电持续阶段的负荷情况。文献[17]仅考虑了车辆某一充电倍率下的充电,假设充电功率在某个范围内满足均匀分布,具有一定的局限性。文献采用分段函数来表示充电过程中功率的变化情况,使得结果更加准确,但该模型仅针对镰氢电池,使得*终的充电负荷结果亦具有一定的局限性。

2电动汽车充电行为分析

基于充电行为的差异性,以下针对各类型电动汽车从开始充电时间、充电电量、充电功率进行分析。

2.1公交车

公交车出行规律较为固定。为了更好地比较不同日期各类型车辆充电行为的不同,将开始充电时间、充电电量、充电功率均按照日期进行了分类,将周一到周五记为工作日,周六周日记为休息日。对南方某市电公交车充电站的充电数据,处理后得到电动公交车不同日期的开始充电时间分布图,如图1所示。

wKgZomVAc9GAVhjlAABmZ8FzNL4526.png

可以发现公交车开始充电时间有两个峰值,分别为中午12:00附近和晚上23:00附近,且在23:00附近会达到一天中的*大峰值。由于充电时间不同,充电电量和功率也会不同,因此,将充电电量按照时间进行分类,将白天定义为7:00-17:00,晚上定义为18:00到第二天6:00o得到电动公交车不同日期白天和晚上的充电电量分布情况如图2、图3所示。

wKgaomVAc9OAE-fHAACm51SjzTw386.pngwKgaomVAc9SAdDNFAACjDoGQqCY025.png

对充电电量进行划分,计算订单中的每一段充电电量对应的平均充电功率如表1所示,相较于直接规定以某一充电功率充电,结果会更加精确。将电动公交车定义为一天一充,其中开始充电时间、充电电量、均按照以上分布规律生成对应的随机数,以此来代替用户不确定的充电行为。

2.2出租车

出租车(包括网约车)同属运营类车辆,近年来发展迅速。同理得到出租车不同日期开始充电时间分布图如图4所示,白天和晚上的充电电量分布图如图5、图6所示。

表1电动公交车不同时间及充电电量下的充电功率

wKgZomVAc9SAVFX2AADYE62aH7I146.png

总体来说工作日和休息日出租车的开始充电时间分布近似相同,主要集中在中午12:00~15:00,晚上22:00~1:00,接近凌晨的充电频率略高于中午的充电频率。

wKgaomVAc9WAJIdHAACGwnkmLV8354.pngwKgZomVAc9WAG4-WAACVkeoRx0U065.png

同理对充电电量进行分类,每一类的电量,匹配所对应的订单中的平均功率如表2所示,文中将电动出租车的充电频率定为一天两次。

wKgaomVAc9aAJBe2AAA-ubG6mT0056.png

2.3私家车

私家车主要用于上下班,大部分时间处于闲置状态,休息日多用于外出娱乐。对数据处理后得到电动私家车开始充电时间分布图如图7所示,充电电量分布图如图8、图9所示。

wKgaomVAc9aAXY8IAABP_Q86ueQ699.png

图7电动私家车开始充电时间分布

wKgZomVAc9aAQwykAACHc5TgDbo669.pngwKgaomVAc9eAINifAACRTW_p6d0899.png

私家车工作日开始充电时间更多的是集中在下班高峰期,约在19:00达到高峰,且晚上充电频率显著高于中午。休息日在午间充电频率整体高于工作日,在8:00~21:00达到一天中的峰值。同理将对充电电量大小进行分类,每一类的电量匹配所对应的订单中的平均功率如表3所示,将电动私家车的充电频率定为一天一次。

wKgZomVAc9eAVBgIAABIlPKmBRE114.png

3电动汽车充电负荷预测模型

已知该地区2015年~2020年的电动汽车保有量,计算得到该地区电动汽车保有量年均涨幅高达75.26%,对增长趋势进行拟合处理如图10所示,计算得到2021年该地区电动汽车的总保有量。已知该地区某市电动汽车保有量占比,以及公交车、出租车、私家车之前的数量占比,得到2021年该市总保有量为64616辆,其中公交车为2565辆,出租车(包括网约车)为20541辆,私家车为41510辆。

wKgaomVAc9iAEhGtAABnLg2QnMM240.png

通过上文各类型车充电开始时间、充电电量、充电功率的分布规律以及保有量数据,对南方某市2021年的公交车、出租车、私家车的充电负荷数据采取蒙特卡洛算法进行预测计算。蒙特卡洛算法落旳是在已知某些随机变量大量数据的前提下,通过大量的随机试验,反复抽取随机数,以此来替代电动汽车的随机充电行为,计算变量在试验中出现的频率近似估计其概率值,并将其作为问题的解。

图11为基于蒙特卡洛算法的电动汽车充电负荷预测流程图,通过仿真计算得到公交车、出租车、私家车一天的充电负荷情况。

为了简化计算流程,做出以下假设:

(1)各个类型电动汽车的开始充电时间与充电电量互相独立,彼此互不影响;

(2)充电过程均视为恒功率充电;

(3)区域内的总负荷为独立车辆充电负荷的叠加,

即对同时刻的不同车型充电负荷进行求和。文中将三种类型电动汽车充电负荷曲线的负荷值相加,计算各类型车不同日期类型的负荷占比,以及负荷峰值如表4所示。由于电动出租车充电频率高,保有量较高,无论工作日还是休息日,该市的电动出租车充电负荷占比始终*高,分别为60.42%和5&88%。由于工作日和休息日对电动公交车和电动出租车的荷预测曲线影响较小,文中只列出电动私家车工作日与休息日的负荷曲线对比图12,以及三种电动汽车在工作日的负荷曲线对比图13,发现私家车在休息日中午和凌晨的充电负荷要高于工作日,工作日更多选择在下班高峰期进行充电。

wKgZomVAc9iAChCIAADdMo2N3aE161.pngwKgaomVAc9mAdCXbAAC3rt_A6iE328.pngwKgZomVAc9mAVVDHAAB-gdsaYJo989.png

将公交车、出租车、私家车三者的负荷曲线叠加得到图14,可以发现工作日与休息日电动汽车的总的负荷曲线分布规律相似。由于出租车的负荷占比始终*大,导致总体分布曲线类似于出租车的充电负荷曲线。

wKgaomVAc9qAYRYNAABn52-rzHo252.png

已知该市2016年冬季典型日负荷曲线如图15中的原负荷曲线所示。并将图14结果叠加到原负荷曲线之上,得到2021年该市电动汽车总负荷曲线与原负荷曲线对比图,如图15所示。并绘制了表5,展示三条曲线负荷峰值、谷值、峰谷差、方差之间的差异,括号内

展示了相较于基础负荷的增长率。表6、表7分别为各类型车开始充电时间、充电电量的概率密度函数拟合公式的具体参数

从图15以及表5可以看出,电动汽车的充电过程使得电网的整体负荷有了较大的提升,会在晚上19:00达到高峰,约为835.09MW(工作日),830.20MW(休息日),负荷峰值分别提高了7.79%(工作日),7.16%(休息日)。相对来说,在夜间负荷谷值的提升更为明显,分别提高10.70%,11.12%,利用这一特性后续可以采用V2G[27-30]等有序充电控制技术,将电动汽车作为一个独立的储能单元与电网进行有效的交互调度,在满足用户充电需求的前提下,提高发电设备在夜间的利用率,实现削峰填谷,保证电网的安全稳定运行。负荷峰谷差由原来的366.99MW提高至383.70MW(工作日)、377.10MW(休息日)分别提高4.55%,2.75%。而负荷的波动情况一般用方差来表示,负荷方差分别提高9.62%(工作日),7.94%(休息日),也表明电动汽车的引入加剧了电网的不稳定波动。

wKgZomVAc9qAVFG_AACD5PjLWgE803.pngwKgZomVAc9qAVvPHAABgz8YwJuQ784.png

文中将各类型电动汽车的开始充电时间以及充电电量通过Matlab进行拟合处理,筛选B2>0.95的函数,其中疋表示复相关系数,其越接近1,表示拟合效果越好。发现除了私家车在工作日与休息日,开始充电时间的概率密度函数用高阶傅里叶函数(如式6)拟合效果较好以外,其余均通过一阶或多阶高斯分布函数(如式7)完成拟合。同时采用*小二乘法估计公式的各项参数,结果如表6与表7所示,其中%表示开始充电时间或是充电电量,/(%)表示与之对应的概率密度。通过对充电行为进行函数拟合,旨在得到一种更加普遍且实际的概率模型,为今后的研究提供帮助。

wKgaomVAc9uALFkiAABtTtSmxuI238.pngwKgZomVAc9uAJozDAAE7pANc1L4932.pngwKgaomVAc9yAYKhrAADU9c1t8qo917.png

4安科瑞充电桩收费运营云平台

4.1概述

AcrelCloud-9000安科瑞充电柱收费运营云平台系统通过物联网技术对接入系统的电动电动自行车充电站以及各个充电整法行不间断地数据采集和监控,实时监控充电桩运行状态,进行充电服务、支付管理,交易结算,资要管理、电能管理,明细查询等。同时对充电机过温保护、漏电、充电机输入/输出过压,欠压,绝缘低各类故障进行预警;充电桩支持以太网4G或WIFI等方式接入互联网,用户通过微信、支付宝,云闪付扫码充电。

4.2应用场所

适用于民用建筑、一般工业建筑、居住小区、实业单位、商业综合体、学校、园区等充电桩模式的充电基础设施设计。

4.3系统结构

微信图片_20220128110125

4.3.1系统分为四层:

1)即数据采集层、网络传输层、数据中心层和客户端层。

2)数据采集层:包括电瓶车智能充电桩通讯协议为标准modbus-rtu。电瓶车智能充电桩用于采集充电回路的电力参数,并进行电能计量和保护。

3)网络传输层:通过4G网络将数据上传至搭建好的数据库服务器。

4)数据中心层:包含应用服务器和数据服务器,应用服务器部署数据采集服务、WEB网站,数据服务器部署实时数据库、历史数据库、基础数据库。

5)应客户端层:系统管理员可在浏览器中访问电瓶车充电桩收费平台。终端充电用户通过刷卡扫码的方式启动充电。

小区充电平台功能主要涵盖充电设施智能化大屏、实时监控、交易管理、故障管理、统计分析、基础数据管理等功能,同时为运维人员提供运维APP,充电用户提供充电小程序。

4.4安科瑞充电桩云平台系统功能

4.4.1智能化大屏

智能化大屏展示站点分布情况,对设备状态、设备使用率、充电次数、充电时长、充电金额、充电度数、充电桩故障等进行统计显示,同时可查看每个站点的站点信息、充电桩列表、充电记录、收益、能耗、故障记录等。统一管理小区充电桩,查看设备使用率,合理分配资源。

参考文献

[1]秦建华,潘崇超,张璇,金泰,李天奇,王永真.基于充电行为分析的电动汽车充电负荷预测.

[2]孔顺飞,胡志坚,谢仕炜,等.考虑分布式储能与电动汽车充电网络的配电网多目标规划[J].电力科学与技术学报,2021,36(1):106-116.

[3]蔡黎,张权文,代妮娜,等.规模化电动汽车接入主动配电网研究进展综述[J]•智慧电力,2021,49(6):75-82.

[4]孟宪珍,张艳,安琪,等.电动汽车接入充电对配电网电压波动的影响[J].电网与清洁能源,2021,37(2):91-98

[5]安科瑞企业微电网设计与应用手册.2022.05版.

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12057

    浏览量

    231018
  • 充电桩
    +关注

    关注

    147

    文章

    2252

    浏览量

    84912
收藏 人收藏

    评论

    相关推荐

    电动汽车充电负荷预测分析

    电网的安全带来了严重的威胁。即随着电动汽车数量的提高,会给电网负荷带来了巨大的冲击。因此,对电动汽车充电负荷趋势进行
    的头像 发表于 07-08 10:24 4040次阅读
    <b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>桩<b class='flag-5'>负荷</b><b class='flag-5'>预测</b>的<b class='flag-5'>分析</b>

    充电机电动汽车的发展趋势

    合,因此充电机功率范围有限。从上面的分析可以看出,研制充电机电动汽车大功率智能充电机具有重要意义。 
    发表于 06-04 01:22

    电动汽车充电技术的要求

    的问题。因此,在目前动力电池不能直接提供更多续驶里程的情况下,如果能够实现电池充电快速化,从某种意义上也就解决了电动汽车续驶里程短这个致命弱点。  2、充电通用化  在多种类型蓄电池、多种电压等级共存的市场
    发表于 04-19 09:14

    电动汽车充电技术的要求

    的问题。因此,在目前动力电池不能直接提供更多续驶里程的情况下,如果能够实现电池充电快速化,从某种意义上也就解决了电动汽车续驶里程短这个致命弱点。  2、充电通用化  在多种类型蓄电池、多种电压等级共存
    发表于 09-05 11:24

    电动汽车有序充放电管理分析

    或者上班时间利用充电桩进行慢速充电,而在紧急的情况下使用快速充电方式。   2. 电动汽车充放电对电网的影响分析  
    发表于 09-25 11:18

    电动汽车交流充电桩怎么设计?

    要想得到快速广泛的普及,便捷高效的电能补给网络建设是重要的前提之一。充电系统为电动汽车运行提供能量补给,是电动汽车的重要基础支撑系统,也是电动汽车商业化、产业化过程中的重要环节。交流
    发表于 04-20 06:54

    电动汽车传导充电系统

    1、国家标准:GB/T 18487.1-2015 电动汽车传导充电系统 第一部分:通用要求GB/T 18487.2-2017 电动汽车传导充电系统 第2部分:非车载传导供电设备电磁兼容
    发表于 09-14 09:18

    电动汽车无线充电优化匹配研究

    2021年华数杯赛题分析A题 电动汽车无线充电优化匹配研究赛题题目分析/选题建议B题 进出口公司的货物装运策略赛题题目分析/选题建议C题
    发表于 09-14 07:21

    电动汽车无线充电优化匹配研究

    A 题 电动汽车无线充电优化匹配研究电动汽车以环境污染小、噪音低、能源利用效率高、维修方便等优势深受消费者青睐。但现有电动汽车的有线充电方式
    发表于 09-14 07:14

    电动汽车传导充电系统

    1、国家标准:GB/T 18487.1-2015电动汽车传导充电系统 第一部分:通用要求GB/T 18487.2-2017电动汽车传导充电系统 第2部分:非车载传导供电设备电磁兼容要求
    发表于 09-15 08:54

    消除有关电动汽车充电的11个误解

    :现有建筑物的基础设施和停车场已经为电动汽车充电进行了预先布线在安装新的电动汽车充电站时,无线连接是最方便的解决方案。无线连接标准需要满足较高的射频环境和
    发表于 11-03 07:45

    快速为电动汽车充电的方法

    媲美。电动车获得成功的一个关键因素在于消费者的接受度。由于锂电池价格下降,各地区的短期法规支持,消费者预计电动汽车的价格会出现下降,因此并不担心价格问题。但是,他们更关心充电速度是否加快,或者说
    发表于 11-11 07:46

    电动汽车充电站介绍

    超过50%的显著增长。中国有望成为电动汽车增长的领跑者。一份报告预测电动汽车拥有量将从2015年的50万辆增长到2020年的500万辆。在这一趋势的带动下,充电站和
    发表于 11-14 07:06

    电动汽车充电负荷预测

    本文主要对未来各类电动汽车大规模充电时所造成的电网负荷进行预测。基于现有中国电动汽车的发展趋势,根据用途不同,分为
    发表于 01-15 13:43 7次下载

    浅谈基于充电行为分析电动汽车充电负荷预测

    程瑜 安科瑞电气股份有限公司 上海嘉定201801 摘要:文章基于南方某市电动汽车充电数据,得出各类型
    的头像 发表于 03-14 16:18 821次阅读
    浅谈基于<b class='flag-5'>充电</b>行为<b class='flag-5'>分析</b>的<b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b><b class='flag-5'>负荷</b><b class='flag-5'>预测</b>