0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FlashText算法的优势

科技绿洲 来源:Python实用宝典 作者:Python实用宝典 2023-11-01 09:44 次阅读

FlashText 算法是由 Vikash Singh 于2017年发表的大规模关键词替换算法,这个算法的时间复杂度仅由文本长度(N)决定,算法时间复杂度为O(N)。

而对于正则表达式的替换,算法时间复杂度还需要考虑被替换的关键词数量(M),因此时间复杂度为O(MxN)。

简而言之, 基于FlashText算法的字符串替换比正则表达式替换快M倍以上,这个M是需要替换的关键词数量,关键词越多,FlashText算法的优势就越明显

下面就给大家介绍如何在 Python 中基于 flashtext 模块使用 FlashText 算法进行字符串查找和替换,如果觉得对你的项目团队很有帮助,请记得帮作者转发一下哦。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点:Python 编程的最好搭档—VSCode 详细指南

请选择以下任一种方式输入命令安装依赖

  1. Windows 环境 打开 Cmd (开始-运行-CMD)。
  2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
  3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.
pip install flashtext

2.基本使用

提取关键词

一个最基本的提取关键词的例子如下:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
keyword_processor = KeywordProcessor()
# 2. 添加关键词
keyword_processor.add_keyword('Big Apple', 'New York')
keyword_processor.add_keyword('Bay Area')
# 3. 处理目标句子并提取相应关键词
keywords_found = keyword_processor.extract_keywords('I love Big Apple and Bay Area.')
# 4. 结果
print(keywords_found)
# ['New York', 'Bay Area']

其中** add_keyword **的第一个参数代表需要被查找的关键词,第二个参数是给这个关键词一个别名,如果找到了则以别名显示。

替换关键词

如果你想要替换关键词,只需要调用处理器的** replace_keywords **函数:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
keyword_processor = KeywordProcessor()
# 2. 添加关键词
keyword_processor.add_keyword('New Delhi', 'NCR region')
# 3. 替换关键词
new_sentence = keyword_processor.replace_keywords('I love Big Apple and new delhi.')
# 4. 结果
print(new_sentence)
# 'I love New York and NCR region.'

关键词大小写敏感

如果你需要精确提取,识别大小写字母,那么你可以在处理器初始化的时候设定** sensitive **参数:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器, 注意设置大小写敏感(case_sensitive)为TRUE
keyword_processor = KeywordProcessor(case_sensitive=True)
# 2. 添加关键词
keyword_processor.add_keyword('Big Apple', 'New York')
keyword_processor.add_keyword('Bay Area')
# 3. 处理目标句子并提取相应关键词
keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.')
# 4. 结果
print(keywords_found)
# ['Bay Area']

标记关键词位置

如果你需要获取关键词在句子中的位置,在** extract_keywords的时候添加span_info=True **参数即可:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
keyword_processor = KeywordProcessor()
# 2. 添加关键词
keyword_processor.add_keyword('Big Apple', 'New York')
keyword_processor.add_keyword('Bay Area')
# 3. 处理目标句子并提取相应关键词, 并标记关键词的起始、终止位置
keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.', span_info=True)
# 4. 结果
print(keywords_found)
# [('New York', 7, 16), ('Bay Area', 21, 29)]

获取目前所有的关键词

如果你需要获取当前已经添加的所有关键词,只需要调用处理器的** get_all_keywords **函数:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
keyword_processor = KeywordProcessor()
# 2. 添加关键词
keyword_processor.add_keyword('j2ee', 'Java')
keyword_processor.add_keyword('colour', 'color')
# 3. 获取所有关键词
keyword_processor.get_all_keywords()
# output: {'colour': 'color', 'j2ee': 'Java'}

批量添加关键词

批量添加关键词有两种方法,一种是通过词典,一种是通过数组:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
keyword_processor = KeywordProcessor()
# 2. (第一种)通过字典批量添加关键词
keyword_dict = {
    "java": ["java_2e", "java programing"],
    "product management": ["PM", "product manager"]
}
keyword_processor.add_keywords_from_dict(keyword_dict)
# 2. (第二种)通过数组批量添加关键词
keyword_processor.add_keywords_from_list(["java", "python"])
# 3. 第一种的提取效果如下
keyword_processor.extract_keywords('I am a product manager for a java_2e platform')
# output ['product management', 'java']

单一或批量删除关键词

删除关键词也非常简单,和添加类似:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
keyword_processor = KeywordProcessor()
# 2. 通过字典批量添加关键词
keyword_dict = {
    "java": ["java_2e", "java programing"],
    "product management": ["PM", "product manager"]
}
keyword_processor.add_keywords_from_dict(keyword_dict)
# 3. 提取效果如下
print(keyword_processor.extract_keywords('I am a product manager for a java_2e platform'))
# ['product management', 'java']
# 4. 单个删除关键词
keyword_processor.remove_keyword('java_2e')
# 5. 批量删除关键词,也是可以通过词典或者数组的形式
keyword_processor.remove_keywords_from_dict({"product management": ["PM"]})
keyword_processor.remove_keywords_from_list(["java programing"])
# 6. 删除了java programing关键词后的效果如下
keyword_processor.extract_keywords('I am a product manager for a java_2e platform')
# ['product management']

3.高级使用

支持额外信息

前面提到在添加关键词的时候第二个参数为其别名,其实你不仅可以指示别名,还可以将额外信息放到第二个参数中:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
kp = KeywordProcessor()
# 2. 添加关键词并附带额外信息
kp.add_keyword('Taj Mahal', ('Monument', 'Taj Mahal'))
kp.add_keyword('Delhi', ('Location', 'Delhi'))
# 3. 效果如下
kp.extract_keywords('Taj Mahal is in Delhi.')
# [('Monument', 'Taj Mahal'), ('Location', 'Delhi')]

这样,在提取关键词的时候,你还能拿到其他一些你想要在得到此关键词时输出的信息。

支持特殊单词边界

Flashtext 检测的单词边界一般局限于 w [A-Za-z0-9_] 外的任意字符,但是如果你想添加某些特殊字符作为单词的一部分也是可以实现的:

from flashtext import KeywordProcessor
# 1. 初始化关键字处理器
keyword_processor = KeywordProcessor()
# 2. 添加关键词
keyword_processor.add_keyword('Big Apple')
# 3. 正常效果
print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.'))
# ['Big Apple']
# 4. 将 '/' 作为单词一部分
keyword_processor.add_non_word_boundary('/')
# 5. 优化后的效果
print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.'))
# []

4.结尾

个人认为这个模块已经满足我们的基本使用了,如果你有一些该模块提供的功能之外的使用需求,可以给 flashtext 贡献代码:
https://github.com/vi3k6i5/flashtext

附 FlashText 与正则相比 查询关键词 所花费的时间之比:

图片

附 FlashText 与正则相比 **替换关键词 **所花费的时间之比:

图片

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4615

    浏览量

    92972
  • 字符串
    +关注

    关注

    1

    文章

    579

    浏览量

    20536
  • python
    +关注

    关注

    56

    文章

    4797

    浏览量

    84743
收藏 人收藏

    评论

    相关推荐

    DFT算法与FFT算法的优劣分析

    本文参考银河电气官网:DFT算法与FFT算法的优劣分析DFT与它的快速算法FFT相比可能更有优势,而FFT却存在某些局限性.在只需要求出部分频点的频率谱线时DFT的运算时间大为减少,所
    发表于 05-22 20:43

    请问关于SigmaStudio的算法库资源主要有哪些?

    最近才开始接触SigmaStudio和SigmaDSP,SigmaStudio的算法库资源据说是很大的优势,这个我个人觉得是很重要的,没有多少人愿意自己去开发这些算法,请问ADI的工程师大牛们,这些
    发表于 08-06 07:02

    HFSS 仿真算法及其应用场景详解:有限元算法、积分方程算法、PO算法

    提升了仿真精度。 全波算法-积分方程算法( IE)积分方程算法基于麦克斯维方程的积分形式,同时也基于格林函数,所以可自动满足辐射边界条件,对于简单模型及材料的辐射问题,具有很大的优势
    发表于 09-20 17:15

    改进的二进制搜索算法原理是什么?有什么优势

    改进的二进制搜索算法原理是什么?改进的二进制搜索算法有什么优势
    发表于 05-20 07:12

    什么是分簇多跳算法?其有什么优势

    本文提出了一种基于能量和距离的分簇多跳算法
    发表于 06-07 06:36

    粒子群算法城镇能源优化调度问题

    computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化
    发表于 07-07 06:04

    如何使用SCL语言去编写控制算法

    SCL语言是什么?SCL语言有何优势?如何使用SCL语言去编写控制算法
    发表于 09-22 06:45

    与CORDIS相比PLL的优势是什么?

    大家好。与 CORDIS 相比,一种算法相对于另一种 PLL 的优势是什么?是否有设置系数方法的描述。
    发表于 01-05 08:28

    基于模糊优势的粗糙集聚类定性组合算法

    为对包含数值和名词属性的混合数据集进行定性组合聚类分析,提出一种基于模糊优势关系的粗糙聚类定性组合算法f-QRD。根据混合数据集的不同属性分别进行聚类并计算类簇之间的模糊优势关系,为避免组合后的类簇
    发表于 06-11 10:38 5次下载

    Python替换字符串的新方法

    FlashText 算法是由 Vikash Singh 于2017年发表的大规模关键词替换算法,这个算法的时间复杂度仅由文本长度(N)决定,算法
    的头像 发表于 04-09 16:37 2054次阅读

    Python替换字符串的新姿势

    FlashText 算法是由 Vikash Singh 于2017年发表的大规模关键词替换算法,这个算法的时间复杂度仅由文本长度(N)决定,算法
    的头像 发表于 02-24 10:50 854次阅读
    Python替换字符串的新姿势

    智慧矿山ai算法系列解析 堵料检测算法功能优势

    智慧矿山AI算法系列中的堵料检测算法的功能优势,了解其重要性和带来的价值
    的头像 发表于 09-28 18:48 753次阅读
    智慧矿山ai<b class='flag-5'>算法</b>系列解析 堵料检测<b class='flag-5'>算法</b>功能<b class='flag-5'>优势</b>

    基于flashtext模块使用FlashText算法进行字符串查找和替换

    时间复杂度还需要考虑被替换的关键词数量(M),因此时间复杂度为O(MxN)。 简而言之, 基于FlashText算法的字符串替换比正则表达式替换快M倍以上,这个M是需要替换的关键词数量,关键词越多,FlashText
    的头像 发表于 10-30 10:16 547次阅读
    基于<b class='flag-5'>flashtext</b>模块使用<b class='flag-5'>FlashText</b><b class='flag-5'>算法</b>进行字符串查找和替换

    目前的室内定位算法有什么优势

    定位算法优势,以帮助读者更好地了解这一领域的技术进展。 一、磁场定位算法优势: 磁场定位算法是利用地球磁场特性实现室内定位。该
    的头像 发表于 12-25 17:00 736次阅读

    常见的加密算法有哪些?它们各自的优势是什么?

    常见的加密算法及其优势如下: AES(Advanced Encryption Standard): AES是一种对称加密算法,采用分组密码体制,支持128位、192位和256位密钥长度。AES的
    的头像 发表于 12-17 15:57 118次阅读