0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

DeepMind最新推出新一代蛋白质结构预测工具,已用于药物设计

医健AI掘金志 来源:医健AI掘金志 2023-11-03 15:39 次阅读

最新的AlphaFold模型不再局限于蛋白质折叠,还能够在配体、蛋白质、核酸以及翻译后修饰等方面生成高度精确的结构预测。DeepMind 其衍生公司 已将该系统用于药物设计。

大约五年前,谷歌最多产的以AI中心的研究实验室之一,DeepMind,推出了 AlphaFold。这是一种可以准确预测人体内许多蛋白质结构的人工智能系统。

从那时起,DeepMind 对系统进行了改进,于 2020 年发布了更新且功能更强大的 AlphaFold 版本--AlphaFold 2。

实验室的工作仍在继续。

10月31日,DeepMind表示,最新版本 AlphaFold 已经出炉,不少人将其取名为“ AlphaFold 3”。

据悉,最新的 AlphaFold 系统由DeepMind及其衍生公司 Isomorphic Labs (专注于利用 AI 做药物发现)共同开发,不再局限于蛋白质折叠,还能够在配体、蛋白质、核酸以及翻译后修饰等方面生成高度精确的结构预测。且 Isomorphic Labs 公司已经将该系统用于药物发现工作。

不过最新版本的“ AlphaFold 3 ”还处于预览阶段,后续开发工作还在进行。

AlphaFold新版本有哪些升级?

第一大升级:预测蛋白质数据库(PDB)中大多数分子类型的结构,达原子精度。

根据DeepMind的说法,AlphaFold可以预测蛋白质数据库(一个广泛使用的科学数据库)中几乎所有分子的结构。DeepMind声称,该模型通常以“原子精度”生成这些预测。

AlphaFold 新版本不仅可以估计蛋白质的形状,还可以估计其他生物分子的形状。包括:小分子(配体)、蛋白质、核酸(DNA和RNA)、具有翻译后修饰(PTM)的分子。

第二大升级:预测相关配体的结构。

所谓配体,是指其他不同分子与蛋白质结合,并导致蛋白质功能方式发生变化。配体在细胞信号传导中起着重要作用,细胞信号传导是细胞相互影响行为的关键生物过程。

一种情况是,当配体附着或结合到蛋白质上时,组合结构称为“蛋白质-配体复合物”。研究人员历来使用一种称为“对接”的方法评估这种复合物的形状。但这一方法的局限性是,只有当有大量关于蛋白质-配体复合物的蛋白质成分的数据可用时,才能使用这种方法。

根据 DeepMind 的说法,新版本的 AlphaFold 新版本可以比“对接”方法更准确地预测蛋白质-配体复合物的形状。与这些方法相比,AlphaFold 新版本需要的数据要少得多。

DeepMind最新模型为蛋白质-配体结构预测设定了新的标准,在预测蛋白质-配体相互作用方面,新AlphaFold的性能比传统方法高出约20%,并且还可以预测尚未进行结构表征的全新蛋白质。

因此,AlphaFold 新版本可能会使科学家更容易研究新发现的蛋白质-配体复合物,而这些复合物的信息很少,而且可以帮助科学家识别和设计潜在的药物新分子。

Isomorphic Labs 最新公布了3个案例实验:抗癌分子的结合(PORCN)、关键癌症靶标的共价配体结合(KRAS),脂质激酶变构抑制剂(PI5P4Kγ)的结构预测。结果显示,该模型预测的结构与案例实验中测定的结构非常接近。

这一举动引起相关学者和药企的关注。有人在国内外社交平台表示:“设计新的分子比开发工具更重要,开发类似工具的人可能要改行,毕竟设计新的高价值的分子才可能是更好的生财之道。”

不过,也有人希望新版本能力再做进一步提升:很多时候,最新的 Alphafold 的相对准确率(RMSD误差<2A)也只有50-60%,这对于药物设计来说往往会有很多问题。

更进一步说,蛋白质和小分子复合物的结构预测,应该是结合了AI和CADD两种方法,即分别基于数据库和物理原理,

第三大升级:预测核酸、以及翻译后修饰结构。

核酸是关键遗传信息的携带者,并破译翻译后修饰--即蛋白质诞生后发生的化学变化。

例如,在 CasLambda 与 crRNA 以及 DNA 结合的结构中,CasLambda 共享 CRISPR-Cas9 系统的基因编辑能力,通常被称为“基因剪刀”,研究人员可以利用它来改变动植物和微生物的DNA,而 CasLambda 的较小尺寸可能使其在基因编辑中更加有效。

据一位从事药物设计的公司创始人评价:做核酸药物的人有福了,至少有个结果。不过结果是否准确,还需找个有经验的CADD(计算机辅助药物设计)研究员来评估。

此外,也有人指出,“我更关心 Alphafold 3 是否可以用于预测病毒的蛋白质结构。AFDB(数据库)中有很多预测结构,几乎涵盖了所有物种,但没有病毒。而且新版本对RNA结构预测还不太好。”

总体而言,至于 AlphaFold 3 具体性能表现,DeepMind 和 Isomorphic Labs 研究人员透露:

•考虑到比较系统使用已知的蛋白质结构作为基础,AlphaFold 3 在配体对接的准确性方面,优于开源分子建模模拟软件 AutoDock Vina 等传统系统;

•与AlphaFold 2.3相比,AlphaFold 3 在预测蛋白质-蛋白质结构方面,抗体结合结构显著增强;

•此在蛋白质-核酸相互作用方面,AlphaFold 3 优于其他竞争方法,如RoseTTA2FoldNA等;

•在 RNA 结构预测方面,AlphaFold 3 优于自动化技术,但略低于顶级CASP 15 参赛者,后者涉及专家手动干预。

但饶有意味的是,针对最新版本,DeepMind的博客文章并没有介绍方法,也没有对比薛定谔的方法。这可能是竞争关系的原因。

无论如何,从表面上看,AlphaFold 3 的功能有了大幅度的提升,如果真如DeepMind所说,那么新版模型扩展的功能和性能提升可以加速生物医学突破,为疾病通路、基因组学、生物可再生材料、植物免疫、潜在治疗靶点、药物设计机制提供各种全新的可能性。

“AlphaFold3 ”能否继续开源?

尽管 AlphaFold 最新版本推出不到两天,但已经有不少人已经开始期盼望继续开源,“因为学术界对蛋白质的研究已经空前高涨。”

一个典型例子是:

尽管 OpenAI 的 ChatGPT 在 2022 年底亮相时就席卷全球,但 2022 年被引用次数最多的论文并非关于生成人工智能(AIGC),甚至不是来自大型科技公司,而是欧洲分子生物学实验室(EMBL-EBI)和 DeepMind 出版的“AlphaFold 蛋白质结构数据库”,被引次数为 1331 次。

更有趣的是,引用量第二同样属于“蛋白质折叠模型”--ColabFold。该系统由马克斯·普朗克多学科科学研究所(MPG)打造,引用次数为 1138 次。

从一定程度上说,尽管企业界将2022年描述为“生成人工智能年”,但学术界则认为:2022年绝对是“蛋白质折叠预测年”。

“目前 Alphafold 拥有3项以上的专利,这不该是理所当然的,也不该是常态。不过AF历代版本确实是目前生物领域最先进的工具,没有之一。”

更有人指出,“闭源不是最好的解决方案,为什么大多数国家都倾向于使用AlphaFold ?我有点怀疑大多数国家是否有人才和预算,来制造像AlphaFold 和蛋白质数据库这样的东西。”

据悉,DeepMind在 AlphaFold 3发布当天披露,已累计超过140万用户(来自190多个国家)访问了AlphaFold蛋白质结构数据库。

不过未来“AlphaFold 3”能否真正推动药物开发,还有待时间去验证。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    29611

    浏览量

    267905
  • 数据库
    +关注

    关注

    7

    文章

    3750

    浏览量

    64207
  • DeepMind
    +关注

    关注

    0

    文章

    129

    浏览量

    10808

原文标题:「AlphaFold 3」要来了?DeepMind最新推出新一代蛋白质结构预测工具,已用于药物设计

文章出处:【微信号:IoT_talk,微信公众号:医健AI掘金志】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具
    发表于 10-14 09:21

    AI实火!诺贝尔又把化学奖颁给AI大模型

    蛋白质结构预测大模型——AlphaFold系列。 今年5月9日,谷歌DeepMind重磅发布了AlphaFold-3,能够精准预测
    的头像 发表于 10-10 10:38 138次阅读

    差示扫描量热仪测试蛋白质的应用案例

    过程中可能出现的吸热或放热峰,这些峰对应于角蛋白分子链的运动、微纤维的熔融、或蛋白质的变性等现象。    通过对比受延展和热处理前后的DSC曲线,研究人员可以了解这些处理对角蛋白复合物的热性质和
    的头像 发表于 10-09 15:45 104次阅读
    差示扫描量热仪测试<b class='flag-5'>蛋白质</b>的应用案例

    创客中国AIGC专题赛冠军天鹜科技:AI蛋白质设计引领者

    源自自然的蛋白质与现代科技的创新精神相结合,打造蛋白质设计与应用的新范式。”在江西南昌举办的第九届“创客中国”生成式人工智能(AIGC)中小企业创新创业大赛中,上海天鹜科技有限公司(下称“天鹜科技”)分享了这理念。 天鹜科技是
    的头像 发表于 09-18 12:04 189次阅读
    创客中国AIGC专题赛冠军天鹜科技:AI<b class='flag-5'>蛋白质</b>设计引领者

    EvolutionaryScale推出基于NVIDIA GPU模型的新型蛋白质研究方案

    EvolutionaryScale 于 6 月 25 日发布了第三 ESM 模型 ESM3,该模型可同时对蛋白质的序列、结构和功能进行推理,为蛋白质研发工程师提供了
    的头像 发表于 08-23 16:45 579次阅读

    利用微流控探针诱导的化学质膜穿孔,实现单细胞胞内蛋白质递送

    将小分子、核酸、蛋白质药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。
    的头像 发表于 05-28 10:11 453次阅读
    利用微流控探针诱导的化学质膜穿孔,实现单细胞胞内<b class='flag-5'>蛋白质</b>递送

    谷歌DeepMind推出新一代药物研发AI模型AlphaFold 3

    谷歌DeepMind公司近日重磅推出款名为AlphaFold 3的全新药物研发AI模型,这创新技术将为科学家们提供前所未有的帮助,使他
    的头像 发表于 05-10 09:35 343次阅读

    洪亮团队在生信期刊JCIM发布最新成果,蛋白质工程迈入通用人工智能时代

    Networks)。在此项研究中,该团队设计了种微环境感知图神经网络ProtLGN。ProtLGN能够从蛋白质三维结构中学习有益的氨基酸突变位点,建立自然选择下的氨基酸序列分
    的头像 发表于 04-19 17:42 507次阅读
    洪亮团队在生信期刊JCIM发布最新成果,<b class='flag-5'>蛋白质</b>工程迈入通用人工智能时代

    长电科技近日推出新一代“5G+”通信芯片封装方案

    长电科技近日推出新一代“5G+”通信芯片封装方案,致力于提升通信技术在恶劣环境下的可靠性和性能。
    的头像 发表于 04-15 10:25 560次阅读

    TE Connectivity推出新一代RAST 5.0高保持力连接器

    TE Connectivity(以下简称“TE”)推出新一代 RAST 5.0 高保持力连接器,创新的组装方式让保持力加强,提供更稳定可靠的连接。
    的头像 发表于 03-28 16:39 796次阅读
    TE Connectivity<b class='flag-5'>推出新一代</b>RAST 5.0高保持力连接器

    天府锦城实验室在生物传感与蛋白质测序领域取得重要进展

    3月10日,记者从天府锦城实验室(未来医学城)获悉,四川大学华西医院临床检验医学研究中心与生物治疗全国重点实验室、天府锦城实验室(未来医学城)耿佳教授和华西第二医院陈路教授联合团队在生物传感与蛋白质测序领域取得重要进展。
    的头像 发表于 03-17 09:10 864次阅读
    天府锦城实验室在生物传感与<b class='flag-5'>蛋白质</b>测序领域取得重要进展

    英飞凌推出新一代碳化硅技术CoolSi MOSFET G2

    在电力电子领域持续创新的英飞凌科技股份公司近日宣布,其已成功推出新一代碳化硅(SiC)MOSFET沟槽栅技术——CoolSiC™ MOSFET Generation 2。这创新技术的推出,标志着功率系统和能量转换领域迎来了新的
    的头像 发表于 03-12 09:43 622次阅读

    智谱AI推出新一代基座大模型GLM-4

    智谱AI近日宣布推出新一代基座大模型GLM-4。这模型在整体性能上相较上一代实现了大幅提升,其表现已逼近GPT-4。
    的头像 发表于 01-17 15:29 953次阅读

    对新辅助TCHP治疗响应的HER2+乳腺癌空间蛋白质组特征

    GeoMx IPA可以实现对组织中任何区域(如肿瘤区域、免疫交界区域、肿瘤微环境和正常基质区域等)中的570多种蛋白质进行空间原位的表达检测,快速发现新的蛋白质生物标记物和药物靶点。
    的头像 发表于 12-26 16:52 800次阅读
    对新辅助TCHP治疗响应的HER2+乳腺癌空间<b class='flag-5'>蛋白质</b>组特征

    人工智能驱动蛋白质设计取得重大突破,人类健康和环境监测有望受益

     据华盛顿大学化学与生物工程系的David Baker教授透露,其领导的研究小组整合了深度学习算法和序列设计工具ProteinMPNN,从而实现了高效的蛋白质功能性设计。
    的头像 发表于 12-20 14:32 675次阅读