JIT Trace
torch.jit.trace使用eager model和一个dummy input作为输入,tracer会根据提供的model和input记录数据在模型中的流动过程,然后将整个模型转换为TorchScript module。看一个具体的例子:
我们使用BERT(Bidirectional Encoder Representations from Transformers)作为例子。
from transformers import BertTokenizer, BertModel
import numpy as np
import torch
from time import perf_counter
def timer(f,*args):
start = perf_counter()
f(*args)
return (1000 * (perf_counter() - start))
# 加载bert model
native_model = BertModel.from_pretrained("bert-base-uncased")
# huggingface的API中,使用torchscript=True参数可以直接加载TorchScript model
script_model = BertModel.from_pretrained("bert-base-uncased", torchscript=True)
script_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', torchscript=True)
# Tokenizing input text
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = script_tokenizer.tokenize(text)
# Masking one of the input tokens
masked_index = 8
tokenized_text[masked_index] = '[MASK]'
indexed_tokens = script_tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Creating a dummy input
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
然后分别在CPU和GPU上测试eager mode的pytorch推理速度。
# 在CPU上测试eager model推理性能
native_model.eval()
np.mean([timer(native_model,tokens_tensor,segments_tensors) for _ in range(100)])
# 在GPU上测试eager model推理性能
native_model = native_model.cuda()
native_model.eval()
tokens_tensor_gpu = tokens_tensor.cuda()
segments_tensors_gpu = segments_tensors.cuda()
np.mean([timer(native_model,tokens_tensor_gpu,segments_tensors_gpu) for _ in range(100)])
再分别在CPU和GPU上测试script mode的TorchScript模型的推理速度
# 在CPU上测试TorchScript性能
traced_model = torch.jit.trace(script_model, [tokens_tensor, segments_tensors])
# 因模型的trace时,已经包含了.eval()的行为,因此不必再去显式调用model.eval()
np.mean([timer(traced_model,tokens_tensor,segments_tensors) for _ in range(100)])
# 在GPU上测试TorchScript的性能
最终运行结果如表
我使用的硬件规格是google colab,cpu是Intel(R) Xeon(R) CPU @ 2.00GHz,GPU是Tesla T4。
从结果来看,在CPU上,TorchScript比pytorch eager快了3.5%,在GPU上,TorchScript比pytorch快了55.6%。
然后我们再用ResNet做一个测试。
import torchvision
import torch
from time import perf_counter
import numpy as np
def timer(f,*args):
start = perf_counter()
f(*args)
return (1000 * (perf_counter() - start))
# Pytorch cpu version
model_ft = torchvision.models.resnet18(pretrained=True)
model_ft.eval()
x_ft = torch.rand(1,3, 224,224)
print(f'pytorch cpu: {np.mean([timer(model_ft,x_ft) for _ in range(10)])}')
# Pytorch gpu version
model_ft_gpu = torchvision.models.resnet18(pretrained=True).cuda()
x_ft_gpu = x_ft.cuda()
model_ft_gpu.eval()
print(f'pytorch gpu: {np.mean([timer(model_ft_gpu,x_ft_gpu) for _ in range(10)])}')
# TorchScript cpu version
script_cell = torch.jit.script(model_ft, (x_ft))
print(f'torchscript cpu: {np.mean([timer(script_cell,x_ft) for _ in range(10)])}')
# TorchScript gpu version
script_cell_gpu = torch.jit.script(model_ft_gpu, (x_ft_gpu))
print(f'torchscript gpu: {np.mean([timer(script_cell_gpu,x_ft.cuda()) for _ in range(100)])}')
TorchScript相比PyTorch eager model,CPU性能提升4.2%,GPU性能提升45%。与Bert的结论一致。
-
cpu
+关注
关注
68文章
10863浏览量
211763 -
数据
+关注
关注
8文章
7030浏览量
89034 -
模型
+关注
关注
1文章
3243浏览量
48840
发布评论请先 登录
相关推荐
评论