0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MIPI在下一代边缘AI物联网设备中有何应用?

ruikundianzi 来源:IP与SoC设计 2023-11-09 10:29 次阅读

数据处理的历史始于 20 世纪 60 年代,当时的集中式现场大型机后来演变为分布式客户端服务器。在本世纪初,集中式云计算变得有吸引力,并开始获得发展势头,成为当今最流行的计算工具之一。

然而,近年来,我们看到对边缘或更接近数据源的处理的需求再次增加。让我们开始 ,“走向未来 !”

云处理的最初好处之一就是能够超越现场处理的有限能力。随着人工智能的进步,越来越多的决策可以在边缘做出。现在很明显,边缘和云处理是互补的技术;它们对于实现最佳系统性能都是必不可少的。

互联系统的设计者必须问,云和边缘之间最有效的系统划分是什么?

云计算与边缘计算的优势

要了解对系统进行分区的最佳方法,我们必须首先了解每种方法的优点。对于边缘计算来说,最大的好处就是低延迟。当必须实时或近实时做出决策时,Edge 确实大放异彩。这种实时决策的能力还提供了其他附带好处。借助人工智能,设备可以通过减少错误通知来提高能效。

在边缘进行处理还可以减少由于传输原始数据到其他地方进行处理而导致安全漏洞的可能性。在连接成本较高或连接有限的情况下,边缘处理可能是唯一可行或实用的选择。

当谈到云计算的好处时,实际上取决于性能。云处理提供了无法在边缘复制的海量计算能力。这对于复杂的机器学习和建模至关重要。云还提供大存储容量,并提供以增量成本扩展存储和计算资源的能力。一旦数据进入数据中心,云就可以提供高安全性。

此外,由于云服务器的集中化,维护通常更容易。

e664ba1a-7ea3-11ee-939d-92fbcf53809c.png

Table 1: Edge vs. Cloud Computing

系统设计示例

现在我们已经检查了权衡,我们可以看一些可以同时使用云和边缘处理的系统设计示例。

智能家居安全系统是一个著名的例子,因为数据处理存在自然的分段。一些任务,例如面部识别、语音识别、忽略错误警报的运动检测、检测相关音频输入(例如用户命令、玻璃破碎或警报)的能力,最好在边缘完成。云仍然可以用于长期保留和机器学习。

e69260aa-7ea3-11ee-939d-92fbcf53809c.png

Figure 2: Smart home system

另一个例子是可穿戴智能设备。可穿戴设备将利用边缘处理来监控环境并通过小型内置传感器识别相关物体、人和声音。可穿戴设备还将通过移动设备连接到云和互联网,使其能够访问庞大的数据库,其中包括联系人、图像、全球地图和百科全书。

e6b255f4-7ea3-11ee-939d-92fbcf53809c.png

Figure 3: Wearables system

上述两个例子同样受益于云计算和边缘计算。云用于匿名数据聚合和优化以及长期存储。通过设备作出更好 的本地决策,您可以延长电池寿命、降低带宽要求并提高安全性。与许多物联网设备一样,这两个系统示例都需要跨多个设备(例如传感器、摄像头、显示器和麦克风)收集和集成数据。要在边缘实时处理所有这些数据,您需要一个能够以极低功耗处理支持人工智能和机器学习的多个感官输入的处理器。Perceive 通过其 Ergo AI 处理器做到了这一点,该处理器专为物联网和边缘设备而设计。

Perceive Ergo 人工智能处理器

Perceive Ergo 芯片是一款推理处理器,专为满足功耗受限的物联网和边缘设备的需求而设计。它可以以 55 TOPS/W 的速度提供 4 个持续的 GPU 等效浮点 TOPS。凭借这种功率,Ergo 处理器可以使用低至 20 mW 的功耗处理大型神经网络,并支持各种高级神经网络,所有这些都具有本地处理功能。Perceive Ergo 芯片支持机器学习应用,例如视频对象检测、音频事件检测、语音识别、视频分割、姿势分析以及其他可创造更好用户体验的功能。Perceive 客户使用 Ergo 处理器的一些目标应用包括前面提到的智能家居安全系统和可穿戴设备示例,以及视频会议和便携式计算。

当系统设计人员寻找边缘处理器时,处理器与系统其他组件兼容非常重要。边缘处理需要系统中的摄像头、扬声器、麦克风和其他传感器阵列与边缘处理器之间有一个接口。这意味着 Perceive 需要一套与系统其他组件兼容并无缝融入客户设计的接口规范。

e6e8c0d0-7ea3-11ee-939d-92fbcf53809c.png

Figure 4: Ergo within a system. Image Perceive. Used with permission. All rights reserved.

要了解如何将 Ergo 集成到边缘设备中,让我们看一下框图。

e70c539c-7ea3-11ee-939d-92fbcf53809c.png

Figure 5: Ergo processor blockdiagram. Image Perceive. Used with permission. All rights reserved.

内置成像接口部分包括 2 个 MIPI CSI-2 和 2 个 CPI 输入以及 1 个 MIPI CSI-2 输出。这支持两个同步图像处理管道:一个使用两个 MIPI D-PHYSM CSI-2 RX 实例的高性能 4K,另一个使用一个实例的标准 HD。还包括通过 MIPI D-PHY CSI-2 TX 将视频传输出去的功能,这在许多应用中都很有用,例如安全性,其中警报可以伴随相应的音频和视频。该子块下方是音频接口,支持麦克风输入和扬声器输出。

右边是CPU系统,主要功能是芯片管理、数据流转以及与主处理器的通信。一些音频预处理由 CPU 子系统处理,例如时间到频谱的转换。DSP 引擎进行音频预处理或后处理,例如 FFT。

在顶部中心,图像处理单元处理来自相机的原始图像,使用缩放、裁剪和色彩空间转换等功能,使神经网络结构更容易使用它们。

Ergo 处理器的大脑是右上角的神经网络结构。这是分割、识别、推理和其他功能发生的地方。Ergo 芯片支持多个神经网络集群,使其能够同时运行多个神经网络并支持多种输入数据类型(例如同时视频和音频),从而能够产生更高质量的推理。例如,与单独的任何一个输入相比,伴随着玻璃破碎声音的运动检测可能会在安全应用中触发更值得信赖的响应。神经网络集群及其 SRAM 占据了芯片面积的三分之二以上。

MIPI 支持边缘设备

就 Ergo 芯片而言,我们看到了几个用于接收和传输视频的 MIPI D-PHY 和 MIPI CSI-2 实例。虽然 MIPI 规范最初是为移动应用程序设计的,但后来已在物联网边缘设备等移动邻近应用程序中广泛实施。由于大多数边缘应用都是电池供电,因此电源效率是重中之重。就像家庭安全和可穿戴系统一样,许多物联网设备需要使用具有高带宽、突发和不对称通信要求的摄像头、显示器和传感器。

因此,MIPI 规范非常适合物联网应用。这些规范旨在与从调制解调器、天线和系统处理器到相机、显示器、传感器和其他外围设备的各种组件连接。MIPI 规范从头开始设计,旨在最大限度地降低功耗,同时支持高带宽和严格的 EMI 要求。简而言之,如果系统需要使用传感器、执行器、显示器、摄像头、高级音频或无线通信接口,那么它很可能受益于 MIPI 规范的使用。

Perceive Ergo 处理器是一个很好的例子,展示了如何利用 MIPI 规范的优势进行边缘处理器设计。Perceive 选择使用 MIPI D-PHY 和 MIPI CSI-2 规范,不仅是因为它们提供的电源效率和低 EMI,还因为它是业界此类应用最广泛采用的规范, 支持它的广泛的生态系统。

Mixel MIPI D-PHY

Mixel 提供了 Perceive MIPI D-PHY CSI-2 TX 和 Mixel MIPI D-PHY CSI-2 RX IP。这两个 IP 在移植到 22FDX 之前都经过了 FDSOI 工艺的硅验证。Perceive 选择采用 FDSOI 工艺,因为与成本更高的 FinFET 工艺相比,它提供了低功耗和低成本的正确组合,以实现高性能。此外,由于衬底偏执电压的可编程性,FDSOI 还提供了更大的灵活性,从而实现更高的性能并可能减少功耗和面积。

这些优点使 FDSOI 成为最广泛采用的物联网设备之一。在接收器方面,Mixel 提供了 CSI-2 D-PHY 的 2 种不同区域优化的 RX 配置:2 通道和 4 通道版本。它们都支持 MIPI D-PHY v2.1,向后兼容 v1.2 和 v1.1。两种配置均以高达 2.5Gbps/通道的速度运行,并支持以高达 80Mbps/通道的速度运行的低功耗模式。

对于发射器端,Mixel 为 Perceive 提供了面积优化的 4 通道 CSI-2 TX D-PHY。该IP还支持MIPI D-PHY v2.1,并具有以2.5Gbps/通道运行的高速传输模式。该发射机用于支持隧道功能。在下图中,您可以看到以 1.5Gbps/通道和 2.5Gbps/通道运行的 TX IP 的眼图。Perceive 凭借 Mixel IP 首次取得成功,现已投入生产。

e7421892-7ea3-11ee-939d-92fbcf53809c.png

Figure 6: Mixel D-PHY TX eye diagram at 1.5Gbps/lane

e7872bc6-7ea3-11ee-939d-92fbcf53809c.png

Figure 7: Mixel D-PHY TX eye diagram at 2.5Gbps/lane

结论

如今的物联网连接系统需要在云和边缘处理之间取得平衡,以优化系统性能。您根本无法击败云数据中心的处理能力,但对于需要实时决策的应用程序,边缘可提供最低的延迟。为了支持边缘设备,您需要一个能够进行机器学习的处理器。Perceive Ergo AI 处理器支持边缘推理处理,使物联网设备更加智能、降低延迟并提高电池寿命和安全性。边缘处理器设计还需要一个与各种物联网外围设备兼容的接口。

MIPI CSI-2 是低功耗传感器和摄像头的事实上的标准,鉴于 MIPI 规范是为低功耗、高带宽应用而设计的,它们非常适合物联网 AI 设备的边缘处理。通过利用 Mixel 的经过硅验证的差异化 MIPI CSI-2 支持的 MIPI D-PHY,Perceive 能够降低风险、缩短上市时间,并为客户提供高能效、极具竞争力的解决方案,以应对不断扩展的市场需求。竞争激烈的人工智能边缘处理市场。








审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 物联网
    +关注

    关注

    2909

    文章

    44578

    浏览量

    372893
  • 数据处理
    +关注

    关注

    0

    文章

    595

    浏览量

    28557
  • MIPI
    +关注

    关注

    11

    文章

    310

    浏览量

    48614
  • 边缘计算
    +关注

    关注

    22

    文章

    3085

    浏览量

    48905

原文标题:MIPI 在下一代边缘 AI 物联网设备中的应用

文章出处:【微信号:IP与SoC设计,微信公众号:IP与SoC设计】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    国家大力部署 IPv6,打造下一代联网新生态

    。大力发展基于IPv6的下一代联网,有助于提升我国网络信息技术自主创新能力和产业高端发展水平。IPv6能够高效支撑移动互联网联网、工业
    的头像 发表于 10-09 13:37 576次阅读
    国家大力部署 IPv6,打造<b class='flag-5'>下一代</b>互<b class='flag-5'>联网</b>新生态

    如何使联网边缘设备高效节能?

    电源效率对于联网的成功至关重要。设备的效率越高,其功能寿命就越长,用户体验就越好。您是否在组织中实施了联网解决方案,以提高
    的头像 发表于 09-24 15:18 532次阅读
    如何使<b class='flag-5'>物</b><b class='flag-5'>联网</b><b class='flag-5'>边缘</b><b class='flag-5'>设备</b>高效节能?

    下一代高功能新一代AI加速器(DRP-AI3):10x在高级AI系统高级AI中更快的嵌入处理

    电子发烧友网站提供《下一代高功能新一代AI加速器(DRP-AI3):10x在高级AI系统高级AI
    发表于 08-15 11:06 0次下载
    <b class='flag-5'>下一代</b>高功能新<b class='flag-5'>一代</b><b class='flag-5'>AI</b>加速器(DRP-<b class='flag-5'>AI</b>3):10x在高级<b class='flag-5'>AI</b>系统高级<b class='flag-5'>AI</b>中更快的嵌入处理

    光路科技FR-TSN系列工业交换机:提升下一代联网的安全与效率

    下一代联网个建立在IP技术基础上的新型公共网络,具有更大的地址空间、更快的通信速度、更高的安全性和更丰富的业务类型。光纤通信技术的广泛应用,将为下一代
    的头像 发表于 07-24 13:53 339次阅读
    光路科技FR-TSN系列工业交换机:提升<b class='flag-5'>下一代</b>互<b class='flag-5'>联网</b>的安全与效率

    24芯M16插头在下一代技术中的潜力

      德索工程师说道随着科技的飞速发展,下一代技术正逐渐展现出其独特的魅力和潜力。在这背景下,24芯M16插头作为种高性能、多功能的连接器,将在下一代技术中发挥至关重要的作用。以下是
    的头像 发表于 06-15 18:03 332次阅读
    24芯M16插头<b class='flag-5'>在下一代</b>技术中的潜力

    赛轮思与NVIDIA合作,利用生成式AI打造下一代车内体验

    AI 驱动的移动出行创新企业与 NVIDIA 合作,打造下一代车内体验。
    的头像 发表于 05-23 10:12 1238次阅读

    丰田、日产和本田将合作开发下一代汽车的AI和芯片

    丰田、日产和本田等日本主要汽车制造商确实计划联手开发下一代汽车的软件,包括在生成式人工智能(AI)和半导体(芯片)等领域进行合作。
    的头像 发表于 05-20 10:25 970次阅读

    DPU技术赋能下一代AI算力基础设施

    4月19日,在以“重构世界 奔赴未来”为主题的2024中国生成式AI大会上,中科驭数作为DPU新型算力基础设施代表,受邀出席了中国智算中心创新论坛,发表了题为《以网络为中心的AI算力底座构建之路》主题演讲,勾勒出在通往AGI之路上,DPU技术赋能
    的头像 发表于 04-20 11:31 843次阅读

    使用NVIDIA Holoscan for Media构建下一代直播媒体应用

    NVIDIA Holoscan for Media 现已向所有希望在完全可重复使用的集群上构建下一代直播媒体应用的开发者开放。
    的头像 发表于 04-16 14:04 664次阅读

    NVIDIA的专用AI平台如何推动下一代医疗健康行业的发展

    医疗科技创新企业在 GTC 上介绍了 NVIDIA 的专用 AI 平台如何推动下一代医疗健康行业的发展。
    的头像 发表于 04-09 10:10 1272次阅读

    IPv6在下一代联网中的地位不可替代

    引言随着计算机技术和通讯技术的的融合发展,下一代联网将会引发社会新需求和社会发展方式的大转变。IPv6技术作为互联网世界中的个重要组成部分,已经逐渐崭露头角,成为新
    的头像 发表于 04-03 13:17 803次阅读
    IPv6<b class='flag-5'>在下一代</b>互<b class='flag-5'>联网</b>中的地位不可替代

    英伟达的下一代AI芯片

    根据英伟达(Nvidia)的路线图,它将推出其下一代black well架构很快。该公司总是先推出个新的架构与数据中心产品,然后在几个月后公布削减的GeForce版本,所以这也是这次的预期。
    的头像 发表于 03-08 10:28 906次阅读
    英伟达的<b class='flag-5'>下一代</b><b class='flag-5'>AI</b>芯片

    高通持续推动终端侧生成式AI变革,推出高通AI Hub赋能开发者

    高通现赋能终端侧AI在下一代PC、智能手机、软件定义汽车、XR设备联网等领域规模化商用,让智能计算无处不在。
    的头像 发表于 02-26 16:46 609次阅读

    苹果正努力为下一代iPhone搭载更强大的AI技术

    苹果公司正致力于在下一代iPhone上实现更强大的本地人工智能技术。近日,苹果收购了家专注于AI视频压缩技术的初创公司WaveOne,此举进步证明了苹果在
    的头像 发表于 01-25 16:46 814次阅读

    使用边缘AI支持在联网设备上实现实时决策

    联网 (IoT) 的战略潜力推动工程师部署了越来越多的边缘设备。这些设备可在没有持续互联网连接
    的头像 发表于 01-04 10:09 2003次阅读
    使用<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>支持在<b class='flag-5'>物</b><b class='flag-5'>联网</b><b class='flag-5'>设备</b>上实现实时决策