0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

颠覆传统技术——带着空调去旅行

向欣电子 2023-11-09 08:10 次阅读

引言:热管理解决方案有很多,主要分为两类:主动制冷和被动制冷。主动制冷系统利用基于压缩机或固态热泵(热电设备)来实现制冷到环境温度以下。被动热管理解决方案仅依靠传导或对流来传递热量,通常由界面材料、散热器和风扇组成。被动散热技术最常用于制冷到环境温度已经足够的情况半导体制冷器(Thermo Electric Cooler)是利用半导体材料的珀尔帖效应制成,所谓珀尔帖效应是指当直流电流通过两种半导体材料组成的电偶时,其一端吸热,一端放热的现象。

掺杂的N型和P型的碲化铋主要用作TEC的半导体材料碲化铋元件采用电串联并且是并行发热。TEC包括一些P型和N型对(组),它们通过电极连在一起,并且夹在两个陶瓷电极之间;当有电流从TEC流过时,电流产生的热量会从TEC的一侧传到另一侧,在TEC上产生″热″侧和″冷″侧,这就是TEC的加热与制冷原理。

是制冷还是加热,以及制冷、加热的速率,由通过它的电流方向和大小来决定。一对电偶产生的热电效应很小,故在实际中都将上百对热电偶串联在一起,所有的冷端集中在一边,热端集中在另一边,这样生产出用于实际的制冷器。如果在应用中需要的制冷或加热量较大,可以使用多级半导体制冷器,对于常年运行的设备,增大制冷元件的对数,尽管增加了一些初成本,但可以获得较高的制冷系数。新一代TEC半导体制冷片与其他制冷技术相比,热电制冷器组件的优势在于精确的温度控制、更小体积、更快的升温速率、更高的效率、更高的可靠性和更低的噪音。

半导体制冷片TEC适用的市场领域:

智能手机

平板电脑

笔记本电脑;

穿戴AR/VR设备产品

显示产品(投影仪、Mini-LED、Micro-LED、激光显示等);

工控设备;

医疗设备;

通讯基站;

光通讯、光模组;

人工智能AI产品;

物联网;

半导体激光器;

新能源汽车;

储能市场;

制冷防护服装;

制冷背包;

其他散热产品......

01TEC技术

自 1834 年发现珀尔帖效应以来,固态热泵就一直存在。几十年前,随着先进半导体热电偶材料以及陶瓷基板组合技术的发展,这种固态热泵开始商业化。热电冷却器是一种固态热泵,需要热交换器通过珀尔帖效应散热。在运行期间,直流电流经过热电冷却器以在陶瓷基板上产生热传输和温差,导致热电冷却器的一侧变冷,而另一侧变热。标准的单级热电冷却器可实现高达 70°C 的温差。

标准热电冷却器的几何尺寸从 2 x 2 毫米到 62 x 62 毫米不等。由于具有较小尺寸与较轻的重量,使热电元件成为几何空间和重量要求受限应用的理想选择。与热电技术相比,传统的基于压缩机系统等冷却技术通常体积和重量更大。热电冷却器还可以用作发电机,将废热转换为可用的输出直流电。对于需要在环境温度以下进行主动冷却,且冷却能力要求小于600瓦的应用,热电设备是理想的选择。当系统设计标准包括精确温度控制、高可靠性、紧凑几何尺寸、较轻重量和环保要求等因素时,设计工程师应该考虑热电冷却器。

02 TEC产品的结构

6dc7f022-7e94-11ee-9788-92fbcf53809c.png

制冷片的作用:就是把制冷对象的热量带到热面。

TEC温控器的作用:确保制冷对象的温度工作在目标温度上下:

当目标对象的温度高于目标温度是,给制冷片通电,让制冷片把目标对象的温度带走;

当目标对象的温度低于某个温度时,停止供电或反向供电,提高目标对象的温度。

散热装置:确保制冷片自身不会因为热面的温度过高而损坏。

传感器:获取目标对象的温度。

6dda70a8-7e94-11ee-9788-92fbcf53809c.png

6dfa1930-7e94-11ee-9788-92fbcf53809c.png

6e1ab258-7e94-11ee-9788-92fbcf53809c.png

03TEC工作原理

半导体制冷片是由半导体所组成的一种冷却装置,于1960年左右才出现。半导体制冷片,也叫热电制冷片,是一种热泵。它利用半导体材料的Peltier效应,当直流电通过两种不同半导体材料串联成的电偶时,在电偶的两端即可分别吸收热量和放出热量,可以实现制冷的目的。它是一种产生负热阻的制冷技术,其特点是无运动部件,可靠性也比较高。

电偶,是指由两个电量相等,距离很近的正负电荷所组成的一个总体。正电荷称为电偶的电源,负电荷称为电偶的电穴。热电偶 thermocouple:热电偶是根据热电效应测量温度的传感器,是温度测量仪表中常用的测温元件. 热电偶是两个不同的金属原件焊接在一起,电流通过时会有压差,用压差来显示温度。即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,且帕尔帖效应所引起的这种现象是可逆的,改变电流方向时,放热和吸热的接头也随之改变,吸收和放出的热量与电流强度I[A]成正比,且与两种导体的性质及热端的温度有关,即:

6e518b8e-7e94-11ee-9788-92fbcf53809c.png

πab称做导体A和B之间的相对帕尔帖系数 ,单位为[V], πab为正值时,表示吸热,反之为放热,由于吸放热是可逆的,所以πab=-πab。金属材料的帕尔帖效应比较微弱,而半导体材料则要强得多,因而得到实际应用的温差电制冷器件都是由半导体材料制成的。

1.N型半导体

在本征半导体中掺入五价杂质元素,例如磷,可形成N型半导体,也称电子型半导体。

因五价杂质原子中只有四个价电子能与周围四个半导体原子中的价电子形成共价键,而多余的一个价电子因无共价键束缚而很容易形成自由电子。在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子, 由热激发形成。

提供自由电子的五价杂质原子因带正电荷而成为正离子,因此五价杂质原子也称为施主杂质。

6e569728-7e94-11ee-9788-92fbcf53809c.png 

2.P型半导体

在本征半导体中掺入三价杂质元素,如硼、镓、铟等形成了P型半导体,也称为空穴型半导体。

因三价杂质原子在与硅原子形成共价键时,缺少一个价电子而在共价键中留下一空穴。P型半导体中空穴是多数载流子,主要由掺杂形成;电子是少数载流子,由热激发形成。空穴很容易俘获电子,使杂质原子成为负离子。三价杂质因而也称为受主杂质。

6e6dc18c-7e94-11ee-9788-92fbcf53809c.png

3.PN结

在一块本征半导体的两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程:

因浓度差

多子的扩散运动由杂质离子形成空间电荷区

空间电荷区形成形成内电场

↓ ↓

内电场促使少子漂移 内电场阻止多子扩散

最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。

6e71fe6e-7e94-11ee-9788-92fbcf53809c.png

PN结加正向电压时的导电情况如图所示。

外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响。而实际上电子在通过电场后势能产生变化,能量转换为各种形势的表现,而热量的吸收与散发都是其表现的一个方面。而半导体制冷片的工作原理实际上就是通过定向电流将热能定向搬运的过程。

04TEC的优势

TEC 热电致冷器11个优点:不需使用任何冷却剂,既能致冷,又能加热,主动冷却,适合局部冷却(spot cooling),具发电能力(温差发电)等优点

1.不需使用任何冷却剂,可连续工作,无污染、无动件、无噪音,寿命长,安装容易,且体积小重量轻,维护容易。2.具有两种功能,既能致冷,又能加热(效率高),透过改变电流方向达冷却或加热两种不同目的,并可做为多级的应用方式,可使效率更高。

3.其冷却方式为主动冷却,而能致冷使温度低于室温,一般的散热片为被动冷却,温度需要高于环境才有散热功能。若于热电器件之热端接上相同的散热片,因热电器件为主动冷却,不断带走冷端的热量,所以冷端可以低于室温,可做为高发热功率之电子器件冷却之用,对于器件的性能提升有很大的帮助。

4.为电流换能型器件,透过输入电流的控制,可实现高精度的温度控制,尤其体积小,效率高,非常适合于光通讯器件如AWG、Transceiver等器件、红外sensor,以及Bio-MEMS器件之精密温度控制。5.适合局部冷却(spot cooling),热电器件可只对特定之发热器件作冷却,而不必冷却整个封装结构,可节省耗电并增加效率。

6.其热惯性非常小,致冷致热时间很快,在热端散热良好冷端空载情况下,通电不到一分钟,就能达到最大温差。7.具发电能力(温差发电),若在热电器件两面建立温差,则可产生直流电,适用于中低温区发电,如Seiko 公司的体温发电腕表等。8.单串热电器件作的功率很小,但用同类型的热电堆组合成热电堆串,采并联方式组合成一个大系统,功率就可以做的很大,由几毫瓦到上万瓦的范围都有可能。9.其温差范围,由+90℃到-130℃之间均可达成。10.冷却速度快,其速度可透过调节工作电压控制,且工作电流或电压的精度要求不高。如额定12V 电压,实际可使用到8~14V。11.不受重力和方向影响,因热电器件不需循环流体,故不受重力和方向的影响,适合应用在航天工业上。NASA应用此技术提供几百瓦的电力于太空探测装置上。

05TEC产品类型及应用

6f08f792-7e94-11ee-9788-92fbcf53809c.png

06 TEC产品技术的难点和挑战

半导体制冷的研究涉及传热学原理、热力学定律以及帕尔贴效应,还要考虑多种因素如材料的优值系数、半导体多级制冷、冷热端散热系统的优化设计等,同时影响半导体制冷的各种因素都是相辅相成的,不是独立的。所以半导体制冷的研究一直是国内外学者关注的热点,但也面临诸多难点。

首先,半导体制冷材料性能的优劣取决于其半导体制冷优值系数Z。构成半导体制冷材料优值系数的三个参数塞贝克系数(α)、电导率(σ)和热导率(K)都是温度的函数。与此同时,优值系数又敏感地依赖于材料种类、组分、掺杂水平和结构。能适合半导体制冷的半导体材料不仅要混合地加入少量杂质改变它的温差电动势率、导热率和导电率,而且还应该具有半导体本身特性,做到既要保持原来半导体的传统半导体特性又要使它具有好的温差电动势率、导热率和导电率存在较大的困难,所以,高优值系数的研究一直是半导体制冷研究的难点问题。
其次,半导体制冷是一个参数多、工况变化复杂的过程,几何结构参数、散热传热等对其影响都很大,采用常规的针对性实验方法难以满足多种需要,并且在进行优化设计的参数选择时需要实验对比不同工况从而选择最优方案。所以如何选择和设计研究过程和方案就显得重要,而整体分析又把问题变得复杂起来。

再者,根据传热学原理、热力学定律以及帕尔贴效应可知,半导体制冷过程中冷、热端的温度差对半导体制冷的热量和冷量的传递有极大的影响,两端换热性能差,就会大幅度地减小同等功率下的制冷能力,若热端散热效果差,往往达不到设计要求。因而冷、热端散热也是半导体制冷的又一个困难:即如何强化冷、热端散热以及对制冷电堆冷、热端散热进行优化设计和改进。
总而言之,半导体制冷的难点在于:高优值系数的材料,复杂的多参数以及冷热端散热的设计。

6f5d5efe-7e94-11ee-9788-92fbcf53809c.png

虽然半导体制冷的研究面临诸多困难,但是可以欣喜地看到当前研究仍然呈现出一片欣欣向荣的景象。到目前为止,国内外的学者从不同角度去提高半导体的制冷效率,展现出各自的优势和实用性。但是半导体制冷的研究当前还存在以下问题。
(1)半导体制冷要想达到机械压缩制冷相当的制冷效率,材料的优值系数就必须提高。然而,直到现在,科学家对半导体制冷材料的研究并未有很大突破。半导体制冷温差较小和制冷系数不高是半导体制冷的最大缺点,而材料的优值系数不高导致这些缺点从而是阻碍半导体制冷发展的最主要因素,因此半导体材料的性能即优值系数Z还有待于进一步的提高。
(2)有关冷、热端散热系统的优化设计的研究较少。这使得半导体制冷的设计多半处于理论计算阶段,半导体制冷的实际运行效果不能得到很好的保证。所以要不断深入进行半导体制冷器模块设计和系统性能优化的研究。
(3)相关领域的技术与手段的引用较少,材料的优值系数的停滞影响了整个半导体制冷行业的发展,所以运用包括新理论和新技术来研究和完善就变得非常重要。半导体制冷也是一个交叉学科,需要不同方面的知识相互配合,共同进步。
(4)随着科学技术的飞速发展,产品器件的尺寸有的越来越大,有的越来越小,有的状况越来越复杂,需要考虑多种因素。这样如何解决大功率半导体多级制冷的优化问题、小尺寸器件的局部散热问题和多因素的半导体热电能量转换问题就成为今后不断努力研究的内容。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    335

    文章

    27885

    浏览量

    224315
  • 热管理
    +关注

    关注

    11

    文章

    452

    浏览量

    21919
  • 制冷片
    +关注

    关注

    1

    文章

    21

    浏览量

    19572
收藏 人收藏

    相关推荐

    颠覆传统,PowerBus开启便捷高效通信新时代

    传统通信与供电系统中,复杂的设计、高昂的成本、漫长的研发周期常常让人望而却步。现在,PowerBus带来全新变革,彻底解决这些痛点! 无极性设计,接线从此再无正反困扰,施工布线简单到极致。端口保护
    发表于 02-14 17:20

    GaN技术:颠覆传统硅基,引领科技新纪元

    中的未来前景。 如今,电源管理设计工程师常常会问道: 现在应该从硅基功率开关转向GaN开关了吗? 氮化镓(GaN)技术相比传统硅基 MOSFET 有许多优势。GaN 是宽带隙半导体,可以让功率开关在高温下工作并实现高功率密度。这种材料的击穿电压较高
    的头像 发表于 02-11 13:44 100次阅读
    GaN<b class='flag-5'>技术</b>:<b class='flag-5'>颠覆</b><b class='flag-5'>传统</b>硅基,引领科技新纪元

    精密空调—精密空调安装全攻略,省时又省力

    在安装精密空调时,需要遵循一系列步骤来确保精密空调的正确安装和高效运行。下面聊一下安装精密空调安装的主要步骤: 1、确定精密空调安装位置: - 确认安装地点符合精密
    的头像 发表于 01-23 09:54 108次阅读
    精密<b class='flag-5'>空调</b>—精密<b class='flag-5'>空调</b>安装全攻略,省时又省力

    精密空调—如何轻松解决精密空调故障?

    精密空调作为数据中心、实验室等关键场所的重要设备,精密空调稳定运行对于保障场所内的温湿度环境至关重要。然而,由于设备长期运行、使用环境复杂等因素,精密空调难免会出现故障。下面聊一下精密空调
    的头像 发表于 12-20 19:58 227次阅读
    精密<b class='flag-5'>空调</b>—如何轻松解决精密<b class='flag-5'>空调</b>故障?

    精密空调—精密空调如何紧急维修?

    精密空调紧急情况: 异常噪音:精密空调运行时出现异常噪音,如摩擦声、撞击声等。 温度异常:室内温度无法达到精密空调设定值,或温度波动较大。 漏水现象:精密空调周围出现漏水或滴水现
    的头像 发表于 12-12 09:27 199次阅读
    精密<b class='flag-5'>空调</b>—精密<b class='flag-5'>空调</b>如何紧急维修?

    使用LM49350做音频开发,调来调去还是发不出声音怎么办?

    使用LM49350做音频开发,LM49350的寄存器太多了,调来调去还是发不出声音。 因为项目时间比较紧,想请教一下大家有什么可以参考的LM49350的寄存器配置?
    发表于 10-18 06:47

    精密空调选购秘籍:风冷精密空调还是水冷精密空调

    风冷精密空调与水冷精密空调是两种常见的精密空调系统,它们在制冷原理和工作方式上有所不同。下面聊一下风冷精密空调与水冷精密空调的区别及工作原理
    的头像 发表于 10-16 18:04 370次阅读
    精密<b class='flag-5'>空调</b>选购秘籍:风冷精密<b class='flag-5'>空调</b>还是水冷精密<b class='flag-5'>空调</b>?

    机房精密空调外机的技术细节!

    机房精密空调室外机作为机房精密空调系统的重要组成部分,其性能的优劣直接影响到整个精密空调的运行效率和可靠性。下面对机房空调室外机的技术进行详
    的头像 发表于 10-15 16:25 450次阅读
    机房精密<b class='flag-5'>空调</b>外机的<b class='flag-5'>技术</b>细节!

    精密空调冷凝风机的精准控制是怎么实现的?

    精密空调专用冷凝风机控制器系统采用先进的控制技术和智能化设计,实现对精密空调冷凝风机的精确控制,确保精密空调的稳定运行。
    的头像 发表于 10-10 16:06 324次阅读
    精密<b class='flag-5'>空调</b>冷凝风机的精准控制是怎么实现的?

    工业空调转OPC UA协议网关对接System Platform实现制冷空调数据的无缝交互

    在智能制造的大潮中,工厂的智能化升级已成为企业提升竞争力的关键步骤。制冷空调,作为工业基础设施的关键,其智能化升级对于维持生产效率和提供舒适工作环境至关重要。传统空调系统面临能耗高、调节不灵
    的头像 发表于 08-12 14:55 321次阅读
    工业<b class='flag-5'>空调</b>转OPC UA协议网关对接System Platform实现制冷<b class='flag-5'>空调</b>数据的无缝交互

    新一代智能插件AOI用极速编程颠覆传统AOI认知

    为了解决传统AOI自动光学检测设备存在的问题,新一代AI视觉前沿技术公司将神经网路深度学习算法应用于AOI中,匠心打造了D系列产品,用极速编程颠覆传统AOI认知。
    的头像 发表于 06-25 15:00 926次阅读
    新一代智能插件AOI用极速编程<b class='flag-5'>颠覆</b>了<b class='flag-5'>传统</b>AOI认知

    家乐福携手BICS,推出旅行eSIM产品

    在全球化日益加深的今天,出国旅行已成为许多人生活的一部分。然而,高昂的国际漫游费用和繁琐的手机使用问题,常常让旅行者倍感困扰。为了解决这一难题,国际通信提供商BICS与跨国零售巨头
    的头像 发表于 06-19 15:27 688次阅读

    颠覆传统DCS架构 | 中控技术全球首款通用控制系统Nyx震撼发布

    新加坡和杭州2024年6月7日 /美通社/ -- 2024年6月5日,中控技术推出了震撼全球自动化领域的通用控制系统Universal Control System (UCS)。UCS的面市不仅颠覆
    的头像 发表于 06-07 14:21 540次阅读
    <b class='flag-5'>颠覆</b><b class='flag-5'>传统</b>DCS架构 | 中控<b class='flag-5'>技术</b>全球首款通用控制系统Nyx震撼发布

    如何实现对空调状态监测的监控

    随着科技的飞速发展和人们生活水平的持续提高,空调已经成为现代家庭和办公环境中不可或缺的一部分。然而,传统空调使用方式往往存在能效低下、操作不便等问题。为了解决这些问题,智能空调控制器
    的头像 发表于 04-15 17:15 721次阅读

    讯维融合通信系统:颠覆传统通信方式,创造更多价值

    讯维融合通信系统以其颠覆性的创新设计,正在对传统通信方式进行深刻的变革,并为企业和个人用户创造了更多的价值。这一系统不仅融合了多种通信方式,还通过智能化的管理和安全保障,提升了通信的效率和安全性,为
    的头像 发表于 04-10 16:34 563次阅读