0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电动汽车中碳化硅器件正在取代硅基功率器件

深圳市浮思特科技有限公司 2023-11-11 11:30 次阅读

11月9日,在华为智慧出行解决方案发布会上,华为与奇瑞两大巨头合作的首款车型智界S7首次亮相,作为继问界之后的第二个华为智选车品牌,及华为与奇瑞合作的首款电动汽车,智界S7有不少亮点,其中亮点之一便是余承东口中的“双800”——续航超过800公里、携带800V高压碳化硅动力平台。SiC器件在电动汽车领域中逐渐从理论中的实用,到了愈发真实的出货量的增长。800V高压的改变,不是简单的在原来电池上加上一倍的电压。

800V 系统逆变器中的碳化硅

虽然将典型400V电池的电压加倍给电动汽车可以带来了巨大的好处,但对于依赖硅 (Si) MOSFETIGBT 的电动汽车逆变器来说,电压较高时其性能会受到影响。因此,汽车设计人员用SiC取代传统的Si功率器件,SiC是一种宽带隙半导体,可以实现更快的开关速度并可以在更高的温度下工作。与Si器件相比,SiC器件更小,并且可以处理更高的工作电压。

图片

SiC 功率开关逆变器设计的核心,有助于实现与双面冷却的更高水平的集成。这显着降低了 SiC 组件和冷却系统设计之间的热阻。这是电动汽车等高功率应用的一个重要方面,其中电源模块的耐热、散热至关重要,而这一次的智界S7隔热用航空级隔热气凝胶、散热用的也是黑科技的超薄液冷降温系统,可以看出电动汽车的电源在用上800V高压后更是需要多层安全防护保障。

与硅基逆变器相比,冷却系统与SiC MOSFET的高效接口可以以更低的成本实现更轻、更小的电源系统。因此,在电动汽车逆变器中,基于Si IGBT的功率开关越来越多地被 SiC MOSFET 取代,后者可将开关损耗降低高达70%,从而提高电气化推进系统的性能并降低成本。

除了更高的开关效率和更高的结温能力外,SiC MOSFET 还具有更长的短路耐受时间和更低的导通电阻。与 Si IGBT 相比,这进一步降低了功耗。

从 Si IGBT 到 SiC MOSFET

牵引逆变器是电动汽车设计的重要组成部分,在逆变器将直流电转换为电动汽车电机的交流电时,IGBT 等开关设备最初负责管理电力。多年来,工程师们意识到逆变器在电动汽车性能和续驶里程方面发挥着至关重要的作用。在这里,如果能用更高能效组件就能以更高的效率从电池中提取更多能量,从而延长续航里程并减小车载电池的尺寸。

其次,虽然电动汽车的行驶里程以及电池尺寸和重量一直是一个关键问题,但当电动汽车从 400V电池系统转向800V电池系统时,汽车工程师开始寻找能够有效处理更高工作电压和温度的组件。这时,SiC MOSFET就会成为牵引逆变器等电动汽车构建模块的首选技术。

将400 V的电压提高一倍,对于车辆用户和制造商来说都带来了一系列的好处,高密度碳化硅器件最大限度地减少了寄生效应和热阻,这可以减少与直流到交流转换相关的功率损耗,同时减小牵引逆变器的尺寸和重量。

这条雄心勃勃的汽车电气化之路首先需要高压功率器件。SiC 半导体因其更快的开关速度以及支持更高的电压和温度而被认为是一种首选技术,大多电动汽车厂商都已经有自己关于SiC的研发团队了。随着全球对汽车电气化的推动,这都使得SiC成为2023年及以后值得关注的技术。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11934

    浏览量

    230345
  • IGBT
    +关注

    关注

    1265

    文章

    3758

    浏览量

    248243
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2758

    浏览量

    62433
收藏 人收藏

    评论

    相关推荐

    碳化硅功率器件的工作原理和应用

    碳化硅(SiC)功率器件近年来在电力电子领域取得了显著的关注和发展。相比传统的(Si)功率
    的头像 发表于 09-13 11:00 431次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的工作原理和应用

    碳化硅功率器件的优点和应用

    碳化硅(SiliconCarbide,简称SiC)功率器件是近年来电力电子领域的一项革命性技术。与传统的
    的头像 发表于 09-11 10:44 408次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的优点和应用

    碳化硅功率器件有哪些优势

    碳化硅(SiC)功率器件是一种基于碳化硅半导体材料的电力电子器件,近年来在功率电子领域迅速崭露头
    的头像 发表于 09-11 10:25 420次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>有哪些优势

    探究电驱动系统碳化硅功率器件封装的三大核心技术

    电动汽车、风力发电等电驱动系统碳化硅功率器件以其优异的性能逐渐取代了传统的
    的头像 发表于 08-19 09:43 281次阅读
    探究电驱动系统<b class='flag-5'>中</b><b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>封装的三大核心技术

    碳化硅功率器件的优势和分类

    碳化硅(SiC)功率器件是利用碳化硅材料制造的半导体器件,主要用于高频、高温、高压和高功率的电子
    的头像 发表于 08-07 16:22 475次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的优势和分类

    碳化硅(SiC)功率器件封装:揭秘三大核心技术

    在全球汽车电动化的浪潮下,汽车半导体领域的功率电子器件作为汽车
    的头像 发表于 08-01 16:09 1711次阅读
    <b class='flag-5'>碳化硅</b>(SiC)<b class='flag-5'>功率</b><b class='flag-5'>器件</b>封装:揭秘三大核心技术

    碳化硅功率器件:高效能源转换的未来

    碳化硅功率器件是一类基于碳化硅材料制造的半导体器件,常见的碳化硅
    的头像 发表于 04-29 12:30 393次阅读

    碳化硅功率器件的特点和应用

    随着全球能源危机和环境问题的日益突出,高效、环保、节能的电力电子技术成为了当今研究的热点。在这一领域,碳化硅(SiC)功率器件凭借其出色的物理性能和电学特性,正在逐步
    的头像 发表于 02-22 09:19 731次阅读

    碳化硅功率器件的优势、应用领域及发展趋势

    随着电力电子技术的快速发展,碳化硅(SiC)功率器件作为新一代半导体材料,正在引发一场革命。与传统的(Si)
    的头像 发表于 01-11 09:25 1742次阅读
    <b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>器件</b>的优势、应用领域及发展趋势

    碳化硅功率器件简介、优势和应用

    碳化硅二极管和碳化硅晶体管。由于其出色的性能,碳化硅功率器件电动汽车、可再生能源系统、智能电网
    的头像 发表于 01-09 09:26 2732次阅读

    碳化硅功率器件的优势应及发展趋势

    应用以及发展趋势。 一、碳化硅功率器件的优势 碳化硅功率器件具有高频率、高效率、高耐
    的头像 发表于 01-06 14:15 713次阅读

    碳化硅功率器件的优势及应用

    传统的功率器件在应对这一挑战时,其性能已经接近极限。碳化硅(SiC)功率
    发表于 01-06 11:06 422次阅读

    碳化硅功率器件的实用性不及功率器件

    其未来应用前景广阔,具有很高的实用性。 首先,碳化硅功率器件的材料特性使其成为目前电力电子技术的热门研究方向之一。相较于
    的头像 发表于 12-21 11:27 577次阅读

    碳化硅功率器件的特点和应用现状

    ,因此在电动汽车、风力发电、轨道交通等领域得到了广泛应用。本文将对碳化硅功率器件的原理、特点、应用现状、挑战以及未来发展趋势进行详细介绍。
    的头像 发表于 12-14 09:14 727次阅读

    碳化硅功率器件的优势、应用领域及未来趋势

    随着科技的不断进步,电力电子设备在各种领域中的应用越来越广泛。然而,传统的功率器件已逐渐达到其性能极限。为了满足不断增长的性能需求,碳化硅
    的头像 发表于 12-13 09:32 674次阅读