0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

应用指南 | FET 生物传感器的直流I-V 特性研究(附直播回顾)

泰克科技 来源:未知 2023-11-14 18:05 次阅读
wKgaomVTR3yACWiEAAAC2xft_Qs247.png 点击上方泰克科技 关注我们!

由于半导体生物传感器的低成本、迅速反应、检测准确等优点,对于此类传感器的研究和开发进行了大量投入。特别是基于场效应晶体管 (FET) 的生物传感器或生物场效应管,它们被广泛用于各种应用:如生物研究,即时诊断,环境应用,以及食品安全。

生物场效应管将生物响应转换为分析物,并将其转换为可以使用直流I-V技术轻松测量的电信号。输出特性 (Id-Vd)、传输特性 (Id-Vg) 和电流测量值相对于时间 (I-t) 可以与分析物的检测和幅度相关。

根据设备上的终端数量,可以使用多个源测量单元(SMU) 轻松完成这些直流I-V测试。SMU是一种既可以输出又可以测量电流和电压的仪器,可以用来对FET的栅极和漏极施加电压。如图1所示,Keithley 4200A-SCS参数分析仪是多个SMU与交互式软件相结合的集成系统。这种可配置的测试系统将这些测量简化为一个集成系统,包括硬件、交互软件、图形和分析功能。

wKgaomVTR3yANVMcAACHIsGn5O0722.jpg

图1. 4200A-SCS参数分析仪

本应用指南描述了典型的生物场效应管,及如何将SMU和被测器件进行电气连接,定义了常见的直流I-V测试和用于进行测量的仪器,并解释了测量注意事项以达到理想测量结果。

wKgaomVTR3yAK16xAABAJGp0uE0313.gif

生物场效应管/BioFET感器

先来回顾一下今年的泰克云上大讲堂—

基于FET的生物传感器测试详解

生物晶体管传感器包含一个晶体管和一个生物敏感层,用于检测类似于生物分子等生物成分。图2显示了一个简化的图,说明了生物晶体管传感器是如何工作的。

wKgaomVTR32AfHbjAAB3kAGELyc475.jpg

图2. 使用生物传感器和直流I-V测量仪器检测和测量生物成分

使用生物传感器,生物成分如葡萄糖、病毒、PH值或癌细胞等被传感元件(如生物受体、传感膜或碳纳米材料)检测,这些传感元件是生物传感器的一部分。该装置将对被分析物的生物反应转化为电信号。生物元件的检测和浓度与流过晶体管的漏极电流有关。然后使用直流I-V测量仪器测量FET的电信号。这些测量仪器与测量传统晶体管的测量仪器是一样的。

在这些设备上执行的常见直流I-V测试包括传输特性、输出特性、阈值电压、开路电位和设备的栅极漏电流。

MOSFET概述

许多生物晶体传感器基于MOSFET或金属氧化物半导体FET,这是一个带有绝缘栅极的三端或四端FET。

图3显示了一个n沟道MOSFET或nMOS晶体管,具有四个端子:栅极、漏极、源极和体极(块体)。源极和漏极触点是大量掺杂n+的区域。衬底为低掺杂材料p-。栅极用一层很薄的氧化层(通常是SiO2)与通道绝缘。

wKgaomVTR32AWSMsAABVkclOaqA362.jpg

图3. MOSFET简化电路

当电压源连接到栅极和漏极端并施加偏置电压Vg和Vd时,在源极和漏极端之间形成导电通道。电流开始从漏极流向源极。电流流动的方向与带负电的电子的运动方向相反。栅极电压与载流子一起控制通道。

wKgaomVTR32Ac-T5AABFXtO5s2U051.jpg

图4. 使用SMU测试MOSFET的直流I-V特性

如图4所示,电路中的两个电源可以替换为SMU。SMU可以提供电压和测量电流,以确定MOSFET的I-V特性。在本例中,一个SMU连接到栅极端子上,施加栅极电压并测量栅极泄漏电流。第二个SMU连接到漏极端,施加漏极电压并测量由此产生的漏极电流。

除了加载电压和测量电流外,还可以远程控制SMU改变电压源的极性,并设置合适的钳位电流,以防止过大的电流损坏设备。

根据I-V测量需求,SMU也可以连接到MOSFET的Source和Bulk端。本示例中,Source端和Bulk端分别连接在SMU的LO终端上。

当使用多个SMU时,SMU的时间必须同步,这在4200A-SCS参数分析仪内会自动完成。

wKgaomVTR32AM25qAABUi1mGmHw738.jpg  

了解更多

扫码立即了解更多半导体材料测试方案,并申请方案演示!

BioFETs示例

在本节中,将提供常见生物场效应管的示例以及如何与这些器件进行电气连接。这些例子包括背栅生物场效应管、扩展栅极FET和离子敏感型FET。

wKgaomVTR32AKPOxAADc_91wEBo613.gif

Back-Gated BioFET

在背栅生物场效应管中,如图5所示,电和化学绝缘材料将半导体层与导电通道分开。当生物受体暴露于特定的分析物或生物元素时,FET的I-V特性将受到影响。在这种情况下,漏极电流与生物因素有关,如病原体或其他生物分析物。

wKgaomVTR32ACTLwAABp3exk5JM437.jpg

图5. 背栅BioFET

电路中的两个SMU用于偏置和表征器件。一个SMU连接到栅极,第二个SMU连接到漏极。源端可以连接到4200A-SCS的接地单元,也可以连接到第三个SMU。

在这个例子中,SMU1提供栅极电压,也可以用来测量栅极泄漏电流。有时使用电源来加载栅极电压SMU的使用提供了一个优势,因为它还可以测量栅极泄漏电流,这有助于研究器件的I-V特性。栅极电压用于控制通道宽度,并可用于增加对分析物的灵敏度,因此更容易测量漏极电流。SMU2连接到漏极端并施加漏极电压(VD)并测量漏极电流(ID)。

wKgaomVTR32AKPOxAADc_91wEBo613.gif

扩展栅FET(EGFET)

图6显示了一个扩展栅FET,它包括一个传感结构和一个MOSFET。在这种生物场效应管中,传感结构和MOSFET在物理上分为两部分。由于MOSFET与传感元件是分离的,因此可以使用市售的MOSFET作为传感器。

EGFET有一个与MOSFET栅极直接接触的工作电极。工作电极在电解质溶液中也有传感膜,用于检测分析物。在这种配置中,SMU1连接到参考电极并输出参考电压(VREF)。该电压用于控制FET的通道宽度。SMU2施加漏极电压(VD)并测量漏极电流(ID)。

与背栅FET一样,由两个SMU测量的MOSFET的转移特性(ID vs. VREF)将根据分析物而变化。SMU也可以用来测量输出特性(ID vs. VD)和器件的栅漏电流。

EGFET的一些应用包括检测特定分子,如葡萄糖、pH值和离子种类。

wKgaomVTR36AWikXAABe-t76atg818.jpg

图6. 扩展栅FET

wKgaomVTR32AKPOxAADc_91wEBo613.gif

离子选择FET(ISFET)

如图7所示,离子选择场效应晶体管(ISFET)用于测量溶液中的离子浓度。离子浓度与流过晶体管的漏极电流有关。ISFET广泛应用于生物医学领域,如pH值监测、葡萄糖测量和抗体检测。

ISFET与EGFET一样,由传感结构和MOSFET组成。与EGFET不同的是,传感元件和FET在物理上不是分开的,而是结合在一起的。ISFET具有与MOSFET相同的基本结构,包括栅极、漏极和源极。然而,传统的MOSFET的金属栅极被溶液中的参考电极和离子敏感膜所取代。这个例子展示了一个硅沟道,但该沟道也可以由石墨烯、硅纳米线或碳纳米管等其他材料制成。

wKgaomVTR36ANXu2AABc0eiJjhE726.jpg

图7. ISFET

在本例中,参考电极连接到SMU1,施加电压并测量栅极电流。栅极电压在基准电极和衬底之间施加,并在FET的漏极和源极之间形成反转层。FET的漏极连接到SMU2,加漏极电压并测量漏极电流。背部端接有需要时用于连接ISFET的衬底和GNDU的Force LO。当电解质溶液的离子浓度变化时,FET的漏极电流也随之变化,并由SMU2测量。

直流I-V测量

本节描述了用于表征生物场效应管的常见直流I-V测量,包括传输特性(Id-Vg)、输出特性(Id-Vd)和漏电流与时间测量(Id-t)。

wKgaomVTR32AKPOxAADc_91wEBo613.gif

传输特性(Id-Vg)

生物场效应管上最常见的电气测量可能是传输特性,它绘制漏极电流与栅极电压的关系。转移特性通常与正在研究的病原体或其他生物因素的浓度有关。

在这个测试中,一个SMU扫描栅极电压,第二个SMU在恒定漏极电压下测量产生的漏极电流。图8显示了四条不同的曲线,代表了四种不同浓度的病原体。这些曲线是使用4200A-SCS参数分析仪生成的。

wKgaomVTR36ADzofAAC1hmwtm3o575.jpg

图8. 转移特性

Clarius软件库中附带了一个FET传输特性的测试,以及一个对传输和输出特性都进行测试的项目。这些测试和项目可以通过在软件的Select视图中在Library的搜索栏中输入biofet来找到。这个测试的Configure截图如图9所示。

wKgaomVTR36AUIGYAAMnXfjVTKY644.png

图9. 在Clarius软件中配置测试视图以测量生物晶体管的Id-Vg

wKgaomVTR32AKPOxAADc_91wEBo613.gif

输出特性(Id-Vd)

另一种常见的测试是确定FET的输出特性,即漏极电流与漏极电压的相关函数,如图10所示。这些曲线是使用4200A-SCS参数分析仪中的两个SMU生成的。

在这种情况下,SMU1连接栅极提供步进电压,而连接漏极的SMU2则扫描电压并测量产生的电流。

为了测试FET的功能,多个栅极阶跃可以生成一系列曲线,并显示漏极电流对栅极电压的依赖关系。或者,栅极电压可以保持恒定,但对生物组分进行改变,以观察不同组分或浓度如何影响漏极电流。

wKgaomVTR36AKdXdAADVFchaC6I996.jpg

图10. 输出特性

wKgaomVTR32AKPOxAADc_91wEBo613.gif

漏极电流 vs. 时间(Id-t)

通过绘制漏极电流随时间的函数图,可以监测生物晶体管传感器的动态响应,如图11所示。漏极电流的大小会随着分析物浓度的变化而变化。

在这种应用中,当漏极电流被测量时,栅极和漏极电压偏置都保持恒定,因此只有分析物在变化。

wKgaomVTR36ACk87AACAf-_dSPs987.jpg

图11. 漏极电流与时间趋势图

测量优化

在本节中,将描述实现最佳测量的方法,包括进行空白测试/空测,以最大限度地减少噪声读数,允许足够的稳定时间,以及规范使用以避免损坏设备。

运行“空白”测试

一旦系统设置好,运行“空白”或空测以确保一切设置和配置正确是一个好方法。这个测试将通过测量设备的I-V特性来建立一个基线电流,以确保它在没有添加任何生物成分的情况下是正常工作的。在添加生物组件之前,可以根据需要对测试电路和设置进行调整。根据设备的类型不同,这个操作可能是可执行的也可能是不可能的。

最小化噪声读数

噪声可能是测量低电流时最常见的问题之一。生物晶体管的漏极电流或栅漏电流可以在nA和pA范围内。噪声可能由几种原因引起,可能需要一些实验来确定其来源。

当带电物体接近被测电路时,会产生静电干扰。在高阻抗电路中,这种电荷不会迅速衰减,可能导致测量结果不稳定。错误的读数可能是由于直流或交流静电场造成的,因此静电屏蔽将有助于最大限度地减少这些场对测试的影响。

静电屏蔽可以只是一个简单的金属盒,将测试电路封闭起来。探针台通常包括一个静电/EMI屏蔽或可选的暗盒。屏蔽应连接到测量电路LO端,即SMU的Force LO端子。Force LO端子位于SMU三轴电缆的外屏蔽层或位于GNDU上。所有电缆都需要采用低噪声设计并屏蔽。每个42XX-SMU配有两根低噪声三轴电缆。

另一种降噪方法是控制外部噪声源。这些噪声源是由马达、电脑屏幕或实验室或试验台内或附近的其他电气设备产生的干扰。它们可以通过屏蔽和过滤或通过去除或关闭噪声源来控制。

综上所述,为了最大限度地减少噪声读数:

让所有带电物体,包括人、导体远离测试电路的敏感区域

避免在测试区域附近移动和振动

控制或消除外部噪声源

增加测量的积分时间,可以在Clarius的测试设置窗口中使用自定义速度模式进行调整

用导电外壳将被测设备屏蔽,并将外壳与测试电路公共端子(Force LO)连接,如图12所示。屏蔽可以只是一个简单的金属盒或网状屏幕,将测试电路封闭起来。

wKgaomVTR3-AMa0wAABKyUUc11U861.jpg

图12. 导电屏蔽壳连接到Force LO

限制电流

为了防止在进行I-V表征时损坏设备,设置钳位值以限制可以流过设备的电流量。这可以在Clarius软件中通过将每个SMU的当前钳位值设置为安全水平来完成。这是一个可编程限制,以确保电流不超过用户定义的水平。

提供足够的稳定时间

当测量低电流(<1µA)时,需要允许足够的稳定时间,以确保在施加或改变电流或电压后测量的稳定性,例如当扫描栅极电压和测量漏极电流时。影响电路稳定时间的因素包括测试电路的分流电容和器件电阻。分流电容包括电缆、测试夹具、探头和开关矩阵。

测量电路的稳定时间可以通过绘制电流与时间到阶跃电压的关系来确定。稳定时间可以通过图形直观地确定。一旦确定了稳定时间,该值可以用作Clarius软件的测试设置窗口中的电压扫描延迟时间。

|结论|

基于fet的生物传感器由于其成本低、反应快、检测准确等优点,研究和开发得到了加强。生物ofet将对分析物的生物响应转换成可以通过直流I-V仪器轻松测量的电信号。4200A-SCS参数分析仪中的SMU用于执行生物场效应管的I-V表征,使用适当的仪器设置和应用适当的测量技术可以达到理想测量结果。

点击阅读原文,申请方案演示

欲知更多产品和应用详情,您还可以通过如下方式联系我们:

邮箱:china.mktg@tektronix.com

网址:tek.com.cn

电话:400-820-5835(周一至周五900)

wKgaomVTR3-AWazIAAAjnzUztYo718.pngwKgaomVTR3-ADVjSAAAH2t9zinI520.jpgwKgaomVTR3-AT9y7AAAoSTIg-D8324.jpg

将您的灵感变为现实

我们提供专业的测量洞见信息,旨在帮助您提高绩效以及将各种可能性转化为现实。
泰克设计和制造能够帮助您测试和测量各种解决方案,从而突破复杂性的层层壁垒,加快您的全局创新步伐。我们携手共进,一定能够帮助各级工程师更方便、更快速、更准确地创造和实现技术进步。

wKgaomVTR3-AY5kLAAgQPXjE_Lg591.png

扫码添加“泰克工程师小助手”

立享1对1专属服务!

wKgaomVTR3-AUIl1AAAVO6TdRKc167.gif

点击“阅读原文”了解更多!


原文标题:应用指南 | FET 生物传感器的直流I-V 特性研究(附直播回顾)

文章出处:【微信公众号:泰克科技】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 泰克科技
    +关注

    关注

    2

    文章

    175

    浏览量

    19128

原文标题:应用指南 | FET 生物传感器的直流I-V 特性研究(附直播回顾)

文章出处:【微信号:泰克科技,微信公众号:泰克科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    生物传感器:科技前沿的生物监测利器

    和品质。生物研究生物传感器可用于细胞信号传导、蛋白质相互作用等生物过程的研究,为生物学家提供
    的头像 发表于 11-20 15:12 711次阅读

    #新品# ST1VAFE3BX生物传感器(带vAFE)

    STMicroelectronics ST1VAFE3BX生物传感器(带vAFE) STMicrochip ST1VAFE3BX生物传感器(带vAFE)可检测生物电势信号,并设有用于运动跟踪的高性能
    的头像 发表于 09-14 15:59 6961次阅读
    #新品# ST1VAFE3BX<b class='flag-5'>生物传感器</b>(带vAFE)

    高可调性材料:Haydale生物传感器油墨,打造灵活定制化印刷解决方案

    Haydale生物传感器油墨是一种高可调性材料,适用于灵活定制化印刷解决方案。它采用先进的材料如石墨烯,通过HDPlas功能化过程制造,具有优异的电导性和酶固定化特性。该油墨在血糖管理、尿酸测试
    的头像 发表于 08-23 16:38 228次阅读

    Aigtek功率放大器如何帮助纳米电子生物传感器更好的研发和生产

    纳米电子生物传感器是纳米结构的半导体材料,或将开启生物工程科技新时代。在过去的二十年中,出现了一些研究努力,以实证研究纳米电子生物传感器在医
    的头像 发表于 05-20 10:59 365次阅读
    Aigtek功率放大器如何帮助纳米电子<b class='flag-5'>生物传感器</b>更好的研发和生产

    电化学生物传感器生物检测领域的显著优势

    电化学生物传感器生物检测领域具有显著的优势,这些优势不仅体现在其高灵敏度、快速响应等方面,更在于其在医学诊断、环境监测、食品安全等多个领域中的广泛应用。下面将详细阐述电化学生物传感器生物
    的头像 发表于 04-29 10:00 649次阅读
    电化学<b class='flag-5'>生物传感器</b>在<b class='flag-5'>生物</b>检测领域的显著优势

    三郡科技:电化学生物传感器电极与生物芯片的异同

    电化学生物传感器电极 与 生物芯片 作为生物技术领域中的两大重要工具,为现代生物分析和医学诊断提供了强有力的支持。虽然它们都涉及生物学和电子
    的头像 发表于 04-28 14:08 776次阅读
    三郡科技:电化学<b class='flag-5'>生物传感器</b>电极与<b class='flag-5'>生物</b>芯片的异同

    便携快速检测的电化学生物传感器:颠覆性变革生物检测方式

    的需求。因此,开发一种便携、快速、准确的生物检测方法成为当前研究的热点。近年来,电化学生物传感器以其独特的优势在生物检测领域崭露头角,有望颠覆传统的
    的头像 发表于 04-26 17:14 1538次阅读

    生物医学领域的传感器有哪些?

    对于传统被测量而言,敏感膜就相当于传感器与被测对象的界面。在传统的传感器前面附加一层根据不同需要而特制的敏感膜,即可表示化学传感器生物传感器
    发表于 03-29 10:49 906次阅读
    <b class='flag-5'>生物</b>医学领域的<b class='flag-5'>传感器</b>有哪些?

    安泰ATA-2161高压放大器在生物传感器研究中的应用

    环境监测、医疗卫生和食品检验等。那么ATA-2161高压放大器在生物传感器研究中有怎样的应用呢? 首先生物传感器主要有下面三种分类命名方式,三种分类方法之间实际互相交叉使用: 1.根据生物传感
    的头像 发表于 03-27 11:18 402次阅读
    安泰ATA-2161高压放大器在<b class='flag-5'>生物传感器</b><b class='flag-5'>研究</b>中的应用

    用于原位监测汗液标志物的全打印、多模态可穿戴生物传感器阵列

    电化学生物传感器已成为通过非侵入性汗液分析来跟踪人体生理动态的有前途的工具。然而,以高度可控的方式集成多路传感器以实现长期可靠的生物传感,仍然是关键挑战。
    的头像 发表于 03-22 17:34 1084次阅读
    用于原位监测汗液标志物的全打印、多模态可穿戴<b class='flag-5'>生物传感器</b>阵列

    ​科普|生物传感器

    01原理 首先生物传感器的组成包含抗体、抗原、蛋白质、DNA或者酶等生物活性材料,当待测物质进入传感器后,这些生物活性材料与待测物进行分子识别,然后发生
    的头像 发表于 03-21 17:17 970次阅读

    利用太赫兹超构表面开发一款革命性的生物传感器

    据麦姆斯咨询报道,近期,伦敦玛丽女王大学(Queen Mary University of London)和格拉斯哥大学(University of Glasgow)多学科研究人员展开合作,利用太赫兹超构表面(Metasurface)开发了一款革命性的生物传感器
    的头像 发表于 02-25 10:23 764次阅读
    利用太赫兹超构表面开发一款革命性的<b class='flag-5'>生物传感器</b>

    三郡科技:如何选择电化学生物传感器电极

    电极生物传感器
    jf_51582067
    发布于 :2024年01月05日 14:32:20

    检测心脏病患者的低成本生物传感器

    下面将介绍一些常见的低成本生物传感器,它们可以用于监测心脏病患者的健康状况。 1、心率传感器:心率是评估心脏病患者健康状况的重要指标之一。心率传感器IRFB4115PBF可以通过测量患者的脉搏或心电图来检测心率。这些
    的头像 发表于 01-02 13:17 451次阅读

    可检测心脏病患者的低成本生物传感器

    据麦姆斯咨询报道,近期,英国国家医疗服务体系(NHS)、学术界以及英国一家计量研究所获得资助以合作开发可快递检测心脏病的低成本生物传感器,供护理人员在急救送诊途中及其它场景中使用,以更快地检测出心脏病患者。
    的头像 发表于 01-02 09:27 1696次阅读