0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

LLM推理上的DeepSpeed Inference优化实践方案

jf_pmFSk4VX 来源:知乎 2023-11-16 14:36 次阅读

一、 DeepSpeed Inference 的优化点

概括来说,DeepSpeed Inference 的优化点主要有以下几点:

GPU 的并行优化

小batch的算子融合

INT8 模型量化

推理的 pipeline 方案

1.1 DeepSpeed 的算子融合

对于 Transformer layer,可分为以下4个主要部分:

Input Layer-Norm plus Query, Key, and Value GeMMs and their bias adds.

Transform plus Attention.

Intermediate FF, Layer-Norm, Bias-add, Residual, and Gaussian Error Linear Unit (GELU).

Bias-add plus Residual.

如图所示,每一部分可分别进行融合,与未融合相比,以上几个部分的加速比可分别达到 1.5x, 2.9x, 3x, 1.2x 。

3d5eb55c-82d5-11ee-939d-92fbcf53809c.jpg

Deep-Fusion strategy for the small-batch inference

1.2 inference pipeline

与训练不同,对于生成式的大模型,主要有以下挑战:

prompt processing phase,该阶段是 compute-bound 的, bubble 数量越少算力利用越充分

token generation phase,该阶段是 bandwidth-bound的,micro-batch 越少对带宽要求越低

decoder 是自回归的,需要多 stage 间的高效调度

自回归生成式模型有两个阶段

pipeline 中多序列的 KV cache 会占用大量显存

3d71ef8c-82d5-11ee-939d-92fbcf53809c.jpg

对于上述问题,DeepSpeed 主要通过以下3种方式进行优化:

1. 隐藏数据依赖及复合时序安排

首先将 batch 拆分为 micro-batch,其中 micro-batch 数等于 pipeline 深度,micro-batch通过动态队列的顺序产生token 并避免 bubbles。另外另外由于两个阶段的耗时不同,使用混合时序可以同时减少两个阶段的延时。

3d7ca67a-82d5-11ee-939d-92fbcf53809c.jpg

2. 将 KV cache 存到 CPU 内存上

3. 通信优化

二、DeepSpeed Inference 实践

2.1 DeepSpeed Inference 的基本用法

首先构造一个基本的 6B GPT-J 文本生成任务,并测量其延时性能

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from time import perf_counter
import numpy as np
import transformers
# hide generation warnings
transformers.logging.set_verbosity_error()

def measure_latency(model, tokenizer, payload, generation_args, device):
  input_ids = tokenizer(payload, return_tensors="pt").input_ids.to(device)
  latencies = []
  # warm up
  for _ in range(2):
    _ = model.generate(input_ids, **generation_args)
  # Timed run
  for _ in range(10):
    start_time = perf_counter()
    _ = model.generate(input_ids, **generation_args)
    latency = perf_counter() - start_time
    latencies.append(latency)
  # Compute run statistics
  time_avg_ms = 1000 * np.mean(latencies)
  time_std_ms = 1000 * np.std(latencies)
  time_p95_ms = 1000 * np.percentile(latencies,95)
  return f"P95 latency (ms) - {time_p95_ms}; Average latency (ms) - {time_avg_ms:.2f} +- {time_std_ms:.2f};", time_p95_ms

# Model Repository on huggingface.co
model_id = "philschmid/gpt-j-6B-fp16-sharded"

# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).cuda()

payload = "Hello my name is Philipp. I am getting in touch with you because i didn't get a response from you. What do I need to do to get my new card which I have requested 2 weeks ago? Please help me and answer this email in the next 7 days. Best regards and have a nice weekend but it"
input_ids = tokenizer(payload,return_tensors="pt").input_ids.to(model.device)
print(f"input payload: 
 
{payload}")
logits = model.generate(input_ids, do_sample=True, num_beams=1, min_length=128, max_new_tokens=128)
print(f"prediction: 
 
 {tokenizer.decode(logits[0].tolist()[len(input_ids[0]):])}")

payload="Hello my name is Philipp. I am getting in touch with you because i didn't get a response from you. What do I need to do to get my new card which I have requested 2 weeks ago? Please help me and answer this email in the next 7 days. Best regards and have a nice weekend but it"*2
print(f'Payload sequence length is: {len(tokenizer(payload)["input_ids"])}')

# generation arguments
generation_args = dict(
 do_sample=False,
 num_beams=1,
 min_length=128,
 max_new_tokens=128
)
vanilla_results = measure_latency(model, tokenizer, payload, generation_args, model.device)

print(f"Vanilla model: {vanilla_results[0]}")

其性能结果输出如下:

Vanilla model: P95 latency (ms) - 5369.078720011748; Average latency (ms) - 5357.65 +- 12.07;

加下来使用 DeepSpeed 的 init_inference 函数包装模型,可以看到之后的模型层变成了 DeepSpeedTransformerInference 类,代码如下:

import deepspeed
# init deepspeed inference engine
ds_model = deepspeed.init_inference(
  model=model,   # Transformers models
  mp_size=1,    # Number of GPU
  dtype=torch.float16, # dtype of the weights (fp16)
  replace_method="auto", # Lets DS autmatically identify the layer to replace
  replace_with_kernel_inject=True, # replace the model with the kernel injector
)
print(f"model is loaded on device {ds_model.module.device}")

from deepspeed.ops.transformer.inference import DeepSpeedTransformerInference
assert isinstance(ds_model.module.transformer.h[0], DeepSpeedTransformerInference) == True, "Model not sucessfully initalized"

# Test model
example = "My name is Philipp and I"
input_ids = tokenizer(example,return_tensors="pt").input_ids.to(model.device)
logits = ds_model.generate(input_ids, do_sample=True, max_length=100)
tokenizer.decode(logits[0].tolist())

payload = (
  "Hello my name is Philipp. I am getting in touch with you because i didn't get a response from you. What do I need to do to get my new card which I have requested 2 weeks ago? Please help me and answer this email in the next 7 days. Best regards and have a nice weekend but it"
  * 2
)
print(f'Payload sequence length is: {len(tokenizer(payload)["input_ids"])}')

# generation arguments
generation_args = dict(do_sample=False, num_beams=1, min_length=128, max_new_tokens=128)
ds_results = measure_latency(ds_model, tokenizer, payload, generation_args, ds_model.module.device)

print(f"DeepSpeed model: {ds_results[0]}")

性能结果如下,跟未优化的相比,性能提升2倍以上

DeepSpeed model: P95 latency (ms) - 2415.4563972260803; Average latency (ms) - 2413.18 +- 1.47;

2.2 inference pipeline 的效果分析

使用 transformers 默认的 pipeline 进行 6B GPT-J 文本生成任务,并测量延时性能

import osfrom time import perf_counterimport numpy as npfrom transformers import pipeline, set_seeddef measure_pipeline_latency(generator, prompt, max_length, num_return_sequences):

  latencies = []
  # warm up
  for _ in range(2):
    output = generator(prompt, max_length=max_length, num_return_sequences=num_return_sequences)
  # Timed run
  for _ in range(10):
    start_time = perf_counter()
    output = generator(prompt, max_length=max_length, num_return_sequences=num_return_sequences)
    latency = perf_counter() - start_time
    latencies.append(latency)
  # Compute run statistics
  time_avg_ms = 1000 * np.mean(latencies)
  time_std_ms = 1000 * np.std(latencies)
  time_p95_ms = 1000 * np.percentile(latencies,95)
  return f"P95 latency (ms) - {time_p95_ms}; Average latency (ms) - {time_avg_ms:.2f} +- {time_std_ms:.2f};", time_p95_msmodel_id = "philschmid/gpt-j-6B-fp16-sharded"local_rank = int(os.getenv('LOCAL_RANK', '0'))generator = pipeline('text-generation', model=model_id, device=local_rank)set_seed(42)output = generator("Hello, I'm a language model,", max_length=50, num_return_sequences=4)print(output)vanilla_results = measure_pipeline_latency(generator, "Hello, I'm a language model,", 50, 4)print(f"Vanilla model: {vanilla_results[0]}")

首先会生成4段不同的结果,如下所示:

[{'generated_text': "Hello, I'm a language model, for the question that is being asked, and I have 2 vectors, and it's not going to start with a verb (ex. I love this movie) what is the best classifier to see if I"}, 
{'generated_text': "Hello, I'm a language model, and I'm at the beginning of my study of LSTMs. I'm following https://medium.com/@LSTMJiaLiu/understanding-lstms-for-nlp"}, 
{'generated_text': "Hello, I'm a language model, I'm a language model. I talk all the time, and I help teach people. That's my only purpose. That's what this is about. I'm doing this, I'm just letting you know"}, 
{'generated_text': "Hello, I'm a language model, a sequence-to-sequence model for generating natural language. I've been
learning all about it, and the more I learn the more awesome it becomes.
I have a couple of questions regarding it."}]

延时性能结果如下:

Vanilla model: P95 latency (ms) - 2417.524548433721; Average latency (ms) - 2409.83 +- 5.28;

使用 Nsight Systems 分析其 profiling,如下:

3d8e2940-82d5-11ee-939d-92fbcf53809c.png

单GPU HF pipeline 的 profiling

接下来可以使用 deepspeed 对原模型进行处理,之后可采用相同的方式生成文本,并测量性能

import torch
import deepspeed
world_size = int(os.getenv('WORLD_SIZE', '4'))
generator.model = deepspeed.init_inference(generator.model,
                      mp_size=world_size,
                      dtype=torch.float,
                      replace_with_kernel_inject=True)

string = generator("DeepSpeed is", do_sample=True, max_length=50, num_return_sequences=4)
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
  print(string)

ds_results = measure_pipeline_latency(generator, "Hello, I'm a language model,", 50, 4)
print(f"DS model: {ds_results[0]}")

当 world_size=1 时相当于只使用了一个GPU,其延时结果如下,与原始版本相比性能提高了62.6%:

DS model: P95 latency (ms) - 1482.9604600323364; Average latency (ms) - 1482.22 +- 0.51;

当 world_size=4 时并使用deepspeed --num_gpus 4 test.py运行代码,此时使用了4块 GPU,性能如下所示,延时约为 单GPU 性能的 37.2%:

DS model: P95 latency (ms) - 553.2004246022552; Average latency (ms) - 551.79 +- 0.86;

使用 Nsight Systems 分析4卡 profiling,可以看到,尽管模型加载到卡上的过程不一致,但最终计算的过程是一致的,如下:

3d9d5c08-82d5-11ee-939d-92fbcf53809c.jpg

4*GPU DeepSpeed pipeline 的 profiling

2.3 DeepSpeed 与 Accelerate 的比较

使用 HuggingFace 的 huggingface/transformers-bloom-inference: Fast Inference Solutions for BLOOM (github.com)的例子来比较 DeepSpeed 与 Accelerate。

下表是分别用 DeepSpeed 与 Accelerate 在 8xA6000 上对bigscience/bloom-7b1模型的 Latency(ms/token) 实测结果:

project bs 1 8 16 32 64 128
accelerate fp16 34.04 7.41 5.12 3.69 3.54 3.38
accelerate int8 89.64 15.41 9.16 5.83 4.52 3.82
ds-inference fp16 19.33 2.42 1.20 0.63 0.38 0.27
ds-zero bf16 145.60 18.56 9.26 4.62 2.35 1.17

Accelerate 运行示例如下:

python3 bloom-inference-scripts/bloom-accelerate-inference.py --name bigscience/bloom-7b1 --batch_size 1 --benchmark

其输出日志为:

Using 8 gpus
Loading model bigscience/bloom-7b1
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:08<00:00,  4.46s/it]
*** Starting to generate 100 tokens with bs=1
Generate args {'max_new_tokens': 100, 'do_sample': False}
*** Running generate
------------------------------------------------------------
in=DeepSpeed is a machine learning framework
out=DeepSpeed is a machine learning framework for deep learning models. It is designed to be easy to use and flexible. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a

*** Running benchmark

*** Performance stats:
Throughput per token including tokenize: 34.04 msecs
Start to ready to generate: 21.959 secs
Tokenize and generate 500 (bs=1) tokens: 6.832 secs
Start to finish: 28.791 secs

DeepSpeed Inference 运行示例如下:

deepspeed --num_gpus 8 bloom-inference-scripts/bloom-ds-inference.py --name bigscience/bloom-7b1 --batch_size 8 --benchmark

其输出日志为:

[2023-05-17 0830,648] [INFO] [launch.pymain] WORLD INFO DICT: {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]}
[2023-05-17 0830,648] [INFO] [launch.pymain] nnodes=1, num_local_procs=8, node_rank=0
[2023-05-17 0830,648] [INFO] [launch.pymain] global_rank_mapping=defaultdict(, {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]})
[2023-05-17 0830,648] [INFO] [launch.pymain] dist_world_size=8
[2023-05-17 0830,648] [INFO] [launch.pymain] Setting CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
[2023-05-17 0833,029] [INFO] [comm.pyinit_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
*** Loading the model bigscience/bloom-7b1
[2023-05-17 0836,668] [INFO] [utils.pysee_memory_usage] pre-ds-inference-init
[2023-05-17 0836,669] [INFO] [utils.pysee_memory_usage] MA 0.0 GB     Max_MA 0.0 GB     CA 0.0 GB     Max_CA 0 GB 
[2023-05-17 0836,669] [INFO] [utils.pysee_memory_usage] CPU Virtual Memory: used = 14.64 GB, percent = 5.8%
[2023-05-17 0840,881] [WARNING] [config_utils.py_process_deprecated_field] Config parameter mp_size is deprecated use tensor_parallel.tp_size instead
[2023-05-17 0840,881] [INFO] [logging.pylog_dist] [Rank 0] quantize_bits = 8 mlp_extra_grouping = False, quantize_groups = 1
Detected CUDA files, patching ldflags
Emitting ninja build file /root/.cache/torch_extensions/py38_cu117/transformer_inference/build.ninja...
Building extension module transformer_inference...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module transformer_inference...
Loading extension module transformer_inference...
Time to load transformer_inference op: 0.3437182903289795 seconds
[2023-05-17 0841,920] [INFO] [logging.pylog_dist] [Rank 0] DeepSpeed-Inference config: {'layer_id': 0, 'hidden_size': 4096, 'intermediate_size': 16384, 'heads': 32, 'num_hidden_layers': -1, 'fp16': True, 'pre_layer_norm': True, 'local_rank': -1, 'stochastic_mode': False, 'epsilon': 1e-05, 'mp_size': 8, 'q_int8': False, 'scale_attention': True, 'triangular_masking': True, 'local_attention': False, 'window_size': 1, 'rotary_dim': -1, 'rotate_half': False, 'rotate_every_two': True, 'return_tuple': True, 'mlp_after_attn': True, 'mlp_act_func_type': , 'specialized_mode': False, 'training_mp_size': 1, 'bigscience_bloom': True, 'max_out_tokens': 1024, 'min_out_tokens': 1, 'scale_attn_by_inverse_layer_idx': False, 'enable_qkv_quantization': False, 'use_mup': False, 'return_single_tuple': False, 'set_empty_params': False, 'transposed_mode': False}
Loading extension module transformer_inference...
Time to load transformer_inference op: 0.06054544448852539 seconds
Loading 2 checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████| 2/2 [00:21<00:00, 11.46s/it]check
*** Starting to generate 100 tokens with bs=8
Generate args {'max_new_tokens': 100, 'do_sample': False}
*** Running generate warmup
Loading 2 checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████| 2/2 [00:26<00:00, 14.34s/it]checkpoint loading time at rank 2: 26.608989238739014 sec
Loading 2 checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████| 2/2 [00:26<00:00, 13.30s/it]
------------------------------------------------------
Free memory : 42.997620 (GigaBytes)  
Total memory: 47.544250 (GigaBytes)  
Requested memory: 0.687500 (GigaBytes) 
Setting maximum total tokens (input + output) to 1024 
WorkSpace: 0x7f3ab4000000 
------------------------------------------------------
*** Running generate
------------------------------------------------------------
in=DeepSpeed is a machine learning framework
out=DeepSpeed is a machine learning framework for deep learning models. It is designed to be easy to use and flexible. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a Python library that provides a high-level API for training and inference on deep learning models. DeepSpeed is a
------------------------------------------------------------
...
[2023-05-17 0814,933] [INFO] [utils.pysee_memory_usage] end-of-run
[2023-05-17 0814,934] [INFO] [utils.pysee_memory_usage] MA 3.33 GB         Max_MA 3.44 GB         CA 3.33 GB         Max_CA 4 GB 
[2023-05-17 0814,934] [INFO] [utils.pysee_memory_usage] CPU Virtual Memory:  used = 30.16 GB, percent = 12.0%
*** Running benchmark

*** Performance stats:
Throughput per token including tokenize: 2.42 msecs
Start to ready to generate: 35.592 secs
Tokenize and generate 4000 (bs=8) tokens: 1.946 secs
Start to finish: 37.537 secs

编辑:黄飞

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10879

    浏览量

    212180
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4752

    浏览量

    129057
  • 内存
    +关注

    关注

    8

    文章

    3036

    浏览量

    74139
  • LLM
    LLM
    +关注

    关注

    0

    文章

    294

    浏览量

    353

原文标题:DeepSpeed Inference 在 LLM 推理上的优化探究

文章出处:【微信号:GiantPandaCV,微信公众号:GiantPandaCV】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    对比解码在LLM上的应用

    为了改进LLM推理能力,University of California联合Meta AI实验室提出将Contrastive Decoding应用于多种任务的LLM方法。实验表明,所提方法能有效改进
    发表于 09-21 11:37 638次阅读
    对比解码在<b class='flag-5'>LLM</b>上的应用

    【飞凌嵌入式OK3576-C开发板体验】rkllm板端推理

    : ulimit -HSn 10240 最后,执行llm_demo可执行文件,并指定rkllm模型文件的路径。这样即可开始推理过程: ./llm_demo --model_path /path
    发表于 08-31 22:45

    深度剖析OpenHarmony AI调度管理与推理接口

    1 简介AI任务管理与统一的推理能力提供了接口的统一标准系统上CPU提供了AI任务调度管理的能力,对AI的能力进行了开放的推理推理,同时,提供了一个不同的生命周期框架层级的应用程序。推理
    发表于 03-25 11:15

    DeepSpeed里面和Zero相关技术教程

    和NVMe 分配大规模Megatron-LM模型 以内存为中心的分块优化 提取权重 ZeRO-Offload概述 训练环境 在单个 V100 GPU 上训练10B的GPT2模型 Megatron-LM GPT-2 的启动脚本更改: DeepSpeed 配置更改 0x0.
    的头像 发表于 06-12 10:25 3750次阅读
    <b class='flag-5'>DeepSpeed</b>里面和Zero相关技术教程

    基准数据集(CORR2CAUSE)如何测试大语言模型(LLM)的纯因果推理能力

      因果推理是人类智力的标志之一。因果关系NLP领域近年来引起了人们的极大兴趣,但其主要依赖于从常识知识中发现因果关系。本研究提出了一个基准数据集(CORR2CAUSE)来测试大语言模型(LLM
    的头像 发表于 06-20 15:39 1849次阅读
    基准数据集(CORR2CAUSE)如何测试大语言模型(<b class='flag-5'>LLM</b>)的纯因果<b class='flag-5'>推理</b>能力

    mlc-llm对大模型推理的流程及优化方案

    比如RWKV和给定的device信息一起编译为TVM中的runtime.Module(在linux上编译的产物就是.so文件)提供mlc-llm的c++推理接口调用 。
    发表于 09-26 12:25 948次阅读
    mlc-<b class='flag-5'>llm</b>对大模型<b class='flag-5'>推理</b>的流程及<b class='flag-5'>优化</b><b class='flag-5'>方案</b>

    Continuous Batching:解锁LLM潜力!让LLM推断速度飙升23倍,降低延迟!

    本文介绍一篇 LLM 推理加速技术 相关的文章,值得读一读。 LLMs 在现实应用中的计算成本主要由服务成本所主导,但是传统的批处理策略存在低效性。在这篇文章中,我们将告诉你
    的头像 发表于 10-15 20:25 695次阅读
    Continuous Batching:解锁<b class='flag-5'>LLM</b>潜力!让<b class='flag-5'>LLM</b>推断速度飙升23倍,降低延迟!

    周四研讨会预告 | 注册报名 NVIDIA AI Inference Day - 大模型推理线上研讨会

    由 CSDN 举办的 NVIDIA AI Inference Day - 大模型推理线上研讨会,将帮助您了解 NVIDIA 开源大型语言模型(LLM推理加速库 TensorRT-
    的头像 发表于 10-26 09:05 362次阅读

    现已公开发布!欢迎使用 NVIDIA TensorRT-LLM 优化大语言模型推理

    NVIDIA 于 2023 年 10 月 19 日公开发布 TensorRT-LLM ,可在 NVIDIA GPU 上加速和优化最新的大语言模型(Large Language Models)的推理
    的头像 发表于 10-27 20:05 991次阅读
    现已公开发布!欢迎使用 NVIDIA TensorRT-<b class='flag-5'>LLM</b> <b class='flag-5'>优化</b>大语言模型<b class='flag-5'>推理</b>

    Hugging Face LLM部署大语言模型到亚马逊云科技Amazon SageMaker推理示例

    亚马逊云科技Amazon SageMaker 进行推理并与我们的模型聊天 清理环境  什么是Hugging Face LLM Inference DLC?  Hugging Face LLM
    的头像 发表于 11-01 17:48 952次阅读
    Hugging Face <b class='flag-5'>LLM</b>部署大语言模型到亚马逊云科技Amazon SageMaker<b class='flag-5'>推理</b>示例

    自然语言处理应用LLM推理优化综述

    当前,业界在将传统优化技术引入 LLM 推理的同时,同时也在探索从大模型自回归解码特点出发,通过调整推理过程和引入新的模型结构来进一步提升推理
    发表于 04-10 11:48 620次阅读
    自然语言处理应用<b class='flag-5'>LLM</b><b class='flag-5'>推理</b><b class='flag-5'>优化</b>综述

    LLM大模型推理加速的关键技术

    LLM(大型语言模型)大模型推理加速是当前人工智能领域的一个研究热点,旨在提高模型在处理复杂任务时的效率和响应速度。以下是对LLM大模型推理加速关键技术的详细探讨,内容将涵盖模型压缩、
    的头像 发表于 07-24 11:38 917次阅读

    魔搭社区借助NVIDIA TensorRT-LLM提升LLM推理效率

    “魔搭社区是中国最具影响力的模型开源社区,致力给开发者提供模型即服务的体验。魔搭社区利用NVIDIA TensorRT-LLM,大大提高了大语言模型的推理性能,方便了模型应用部署,提高了大模型产业应用效率,更大规模地释放大模型的应用价值。”
    的头像 发表于 08-23 15:48 467次阅读

    TensorRT-LLM低精度推理优化

    本文将分享 TensorRT-LLM 中低精度量化内容,并从精度和速度角度对比 FP8 与 INT8。首先介绍性能,包括速度和精度。其次,介绍量化工具 NVIDIA TensorRT Model
    的头像 发表于 11-19 14:29 341次阅读
    TensorRT-<b class='flag-5'>LLM</b>低精度<b class='flag-5'>推理</b><b class='flag-5'>优化</b>

    解锁NVIDIA TensorRT-LLM的卓越性能

    NVIDIA TensorRT-LLM 是一个专为优化大语言模型 (LLM) 推理而设计的库。它提供了多种先进的优化技术,包括自定义 Att
    的头像 发表于 12-17 17:47 195次阅读